BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26926377)

  • 1. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.
    Kiran KU; Ravindraswami K; Eshwarappa KM; Somashekarappa HM
    Appl Radiat Isot; 2016 May; 111():56-65. PubMed ID: 26926377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response function of NaI(Tl) detectors and multiple backscattering of gamma rays in aluminium.
    Sabharwal AD; Singh M; Singh B; Sandhu BS
    Appl Radiat Isot; 2008 Oct; 66(10):1467-73. PubMed ID: 18467113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigations of multiple scattering of 662keV gamma photons in elements and binary alloys.
    Singh G; Singh M; Sandhu BS; Singh B
    Appl Radiat Isot; 2008 Aug; 66(8):1151-9. PubMed ID: 18313314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation.
    Chuong HD; Hung NQ; My Le NT; Nguyen VH; Thanh TT
    Appl Radiat Isot; 2019 Jul; 149():1-8. PubMed ID: 31003039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of angular distribution of 662 keV gamma rays by Monte Carlo method in copper medium.
    Kahraman A; Ozmutlu EN; Gurler O; Yalcin S; Kaynak G; Gundogdu O
    Appl Radiat Isot; 2009 Dec; 67(12):2083-7. PubMed ID: 19487129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma rays.
    Singh M; Singh G; Sandhu BS; Singh B
    Appl Radiat Isot; 2006 Mar; 64(3):373-8. PubMed ID: 16307888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental measurement of effective atomic numbers and albedo factors for some alloys using the backscattering technique.
    Kaur T; Sharma J; Singh T
    Appl Radiat Isot; 2020 Apr; 158():109065. PubMed ID: 32174379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment.
    Zhang Y; Li C; Liu D; Zhang Y; Liu Y
    Appl Radiat Isot; 2015 Apr; 98():44-8. PubMed ID: 25635669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study for intermediate crystal size of NaI(Tl) scintillation detector.
    Singh I; Singh B; Sandhu BS; Sabharwal AD
    Rev Sci Instrum; 2020 Jul; 91(7):073105. PubMed ID: 32752814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verification of Compton scattering spectrum of a 662keV photon beam scattered on a cylindrical steel target using MCNP5 code.
    Thanh TT; Nguyen VH; Chuong HD; Tran LB; Tam HD; Binh NT; Tao CV
    Appl Radiat Isot; 2015 Nov; 105():294-298. PubMed ID: 26363240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation.
    Hansman J; Mrdja D; Slivka J; Krmar M; Bikit I
    Appl Radiat Isot; 2015 May; 99():150-4. PubMed ID: 25769009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector.
    Shi HX; Chen BX; Li TZ; Yun D
    Appl Radiat Isot; 2002 Oct; 57(4):517-24. PubMed ID: 12361331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations to estimate the background spectrum in a shielded NaI(Tl) gamma-spectrometric system.
    Sengupta Mitra M; Sarkar PK
    Appl Radiat Isot; 2005 Oct; 63(4):415-22. PubMed ID: 15998590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of NaI(TL) detector in a shadow-shield scanning bed whole-body monitor for uniform and axial cavity activity distribution in a BOMAB phantom.
    Akar DK; Patni HK; Nadar MY; Ghare VP; Rao DD
    Radiat Prot Dosimetry; 2013 Jul; 155(3):292-9. PubMed ID: 23390143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a computer code using the EGS4 Monte Carlo simulation system to evaluate the response of a NaI(Tl) detector to photons with energies below 300 keV.
    Al-Ghorabie FH
    Appl Radiat Isot; 2006 Jan; 64(1):85-92. PubMed ID: 16122931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approximation for response function to gamma-rays of NaI(Tl) detectors up to 1.5 MeV.
    Cengiz A
    Appl Radiat Isot; 2008 Oct; 66(10):1371-6. PubMed ID: 18486481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy.
    Autret D; Bitar A; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2005 Feb; 20(1):77-84. PubMed ID: 15778585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of response function for a NaI(Tl) detector for gamma rays from 241Am/Be source.
    Vitorelli JC; Silva AX; Crispim VR; da Fonseca ES; Pereira WW
    Appl Radiat Isot; 2005 Apr; 62(4):619-22. PubMed ID: 15701418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of the nonlinear full peak energy responses for gamma-ray scintillation detectors.
    Peeples JL; Gardner RP
    Appl Radiat Isot; 2012 Jul; 70(7):1058-62. PubMed ID: 22178700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New numerical simulation method to calibrate the regular hexagonal NaI(Tl) detector with radioactive point sources situated non-axial.
    Hamzawy A; Grozdanov DN; Badawi MS; Aliyev FA; Thabet AA; Abbas MI; Ruskov IN; El-Khatib AM; Kopatch YN; Gouda MM
    Rev Sci Instrum; 2016 Nov; 87(11):115105. PubMed ID: 27910417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.