These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26926831)

  • 1. Hyperdeactivation of the Default Mode Network in People With Schizophrenia When Focusing Attention in Space.
    Hahn B; Harvey AN; Gold JM; Fischer BA; Keller WR; Ross TJ; Stein EA
    Schizophr Bull; 2016 Sep; 42(5):1158-66. PubMed ID: 26926831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological Evidence for Hyperfocusing of Spatial Attention in Schizophrenia.
    Kreither J; Lopez-Calderon J; Leonard CJ; Robinson BM; Ruffle A; Hahn B; Gold JM; Luck SJ
    J Neurosci; 2017 Apr; 37(14):3813-3823. PubMed ID: 28283557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuospatial attention in schizophrenia: deficits in broad monitoring.
    Hahn B; Robinson BM; Harvey AN; Kaiser ST; Leonard CJ; Luck SJ; Gold JM
    J Abnorm Psychol; 2012 Feb; 121(1):119-28. PubMed ID: 21604825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load-dependent hyperdeactivation of the default mode network in people with schizophrenia.
    Hahn B; Harvey AN; Gold JM; Ross TJ; Stein EA
    Schizophr Res; 2017 Jul; 185():190-196. PubMed ID: 28073606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisaccade Deficits in Schizophrenia Can Be Driven by Attentional Relevance of the Stimuli.
    Bansal S; Gaspar JM; Robinson BM; Leonard CJ; Hahn B; Luck SJ; Gold JM
    Schizophr Bull; 2021 Mar; 47(2):363-372. PubMed ID: 32766726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical hyperactivation at low working memory load: A primary processing abnormality in people with schizophrenia?
    Hahn B; Bae GY; Robinson BM; Leonard CJ; Luck SJ; Gold JM
    Neuroimage Clin; 2020; 26():102270. PubMed ID: 32388334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External cues improve visual working memory encoding in the presence of salient distractors in schizophrenia.
    Barnes-Scheufler CV; Rösler L; Schaum M; Schiweck C; Peters B; Mayer JS; Reif A; Wibral M; Bittner RA
    Psychol Med; 2024 Mar; ():1-10. PubMed ID: 38436135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
    Dombert PL; Kuhns A; Mengotti P; Fink GR; Vossel S
    Neuroimage; 2016 Nov; 142():553-564. PubMed ID: 27523448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms of top-down control during spatial and feature attention.
    Giesbrecht B; Woldorff MG; Song AW; Mangun GR
    Neuroimage; 2003 Jul; 19(3):496-512. PubMed ID: 12880783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired modulation of attention and emotion in schizophrenia.
    Dichter GS; Bellion C; Casp M; Belger A
    Schizophr Bull; 2010 May; 36(3):595-606. PubMed ID: 18843096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network.
    Hahn B; Ross TJ; Yang Y; Kim I; Huestis MA; Stein EA
    J Neurosci; 2007 Mar; 27(13):3477-89. PubMed ID: 17392464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of frontoparietal attention networks by non-predictive gaze and arrow cues.
    Joseph RM; Fricker Z; Keehn B
    Soc Cogn Affect Neurosci; 2015 Feb; 10(2):294-301. PubMed ID: 24748545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.