These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26926914)

  • 1. Decellularisation and histological characterisation of porcine peripheral nerves.
    Zilic L; Wilshaw SP; Haycock JW
    Biotechnol Bioeng; 2016 Sep; 113(9):2041-53. PubMed ID: 26926914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering.
    Zilic L; Garner PE; Yu T; Roman S; Haycock JW; Wilshaw SP
    J Anat; 2015 Sep; 227(3):302-14. PubMed ID: 26200940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.
    Hadlock T; Sundback C; Hunter D; Cheney M; Vacanti JP
    Tissue Eng; 2000 Apr; 6(2):119-27. PubMed ID: 10941207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterisation of a large diameter decellularised vascular allograft.
    Aldridge A; Desai A; Owston H; Jennings LM; Fisher J; Rooney P; Kearney JN; Ingham E; Wilshaw SP
    Cell Tissue Bank; 2018 Sep; 19(3):287-300. PubMed ID: 29188402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of an acellular amniotic membrane matrix for use in tissue engineering.
    Wilshaw SP; Kearney JN; Fisher J; Ingham E
    Tissue Eng; 2006 Aug; 12(8):2117-29. PubMed ID: 16968153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects.
    Fansa H; Keilhoff G
    Neurol Res; 2004 Mar; 26(2):167-73. PubMed ID: 15072636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of peripheral nerve ECM components in the tissue engineering nerve construction.
    Gao X; Wang Y; Chen J; Peng J
    Rev Neurosci; 2013; 24(4):443-53. PubMed ID: 23907421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen nerve conduits--assessment of biocompatibility and axonal regeneration.
    Stang F; Fansa H; Wolf G; Keilhoff G
    Biomed Mater Eng; 2005; 15(1-2):3-12. PubMed ID: 15623925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Chemical and Radiation Sterilisation on the Biological and Biomechanical Properties of Decellularised Porcine Peripheral Nerves.
    Holland JDR; Webster G; Rooney P; Wilshaw SP; Jennings LM; Berry HE
    Front Bioeng Biotechnol; 2021; 9():660453. PubMed ID: 34150728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration.
    McGrath AM; Novikova LN; Novikov LN; Wiberg M
    Brain Res Bull; 2010 Oct; 83(5):207-13. PubMed ID: 20633614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering small-diameter vascular grafts: preparation of a biocompatible porcine ureteric scaffold.
    Derham C; Yow H; Ingram J; Fisher J; Ingham E; Korrosis SA; Homer-Vanniasinkam S
    Tissue Eng Part A; 2008 Nov; 14(11):1871-82. PubMed ID: 18950273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix components in peripheral nerve regeneration.
    Gonzalez-Perez F; Udina E; Navarro X
    Int Rev Neurobiol; 2013; 108():257-75. PubMed ID: 24083438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.
    Fermor HL; Russell SL; Williams S; Fisher J; Ingham E
    J Mater Sci Mater Med; 2015 May; 26(5):186. PubMed ID: 25893393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.
    Chiono V; Tonda-Turo C
    Prog Neurobiol; 2015 Aug; 131():87-104. PubMed ID: 26093353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering.
    Bolland F; Korossis S; Wilshaw SP; Ingham E; Fisher J; Kearney JN; Southgate J
    Biomaterials; 2007 Feb; 28(6):1061-70. PubMed ID: 17092557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of an acellular porcine medial meniscus for use in tissue engineering.
    Stapleton TW; Ingram J; Katta J; Knight R; Korossis S; Fisher J; Ingham E
    Tissue Eng Part A; 2008 Apr; 14(4):505-18. PubMed ID: 18370607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterisation of a low-concentration sodium dodecyl sulphate decellularised porcine dermis.
    Helliwell JA; Thomas DS; Papathanasiou V; Homer-Vanniasinkam S; Desai A; Jennings LM; Rooney P; Kearney JN; Ingham E
    J Tissue Eng; 2017; 8():2041731417724011. PubMed ID: 28815010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-Graft of Bone Marrow Stromal Cells and Schwann Cells Into Acellular Nerve Scaffold for Sciatic Nerve Regeneration in Rats.
    Zhou LN; Zhang JW; Liu XL; Zhou LH
    J Oral Maxillofac Surg; 2015 Aug; 73(8):1651-60. PubMed ID: 25959876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advance in study of artificial nerve].
    Zhu QT; Zhu JK; Cheng G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2000 Nov; 14(6):369-71. PubMed ID: 12516443
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.