These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2692708)

  • 1. Binding of pyrimidin-2-one ribonucleoside by cytidine deaminase as the transition-state analogue 3,4-dihydrouridine and the contribution of the 4-hydroxyl group to its binding affinity.
    Frick L; Yang C; Marquez VE; Wolfenden R
    Biochemistry; 1989 Nov; 28(24):9423-30. PubMed ID: 2692708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-state stabilization by adenosine deaminase: 1,6-addition of water to purine ribonucleoside, the enzyme's affinity for 6-hydroxy-1,6-dihydropurine ribonucleoside, and the effective concentration of substrate water at the active site.
    Jones W; Kurz LC; Wolfenden R
    Biochemistry; 1989 Feb; 28(3):1242-7. PubMed ID: 2713361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of a single hydroxyl group to transition-state discrimination by adenosine deaminase: evidence for an "entropy trap" mechanism.
    Kati WM; Wolfenden R
    Biochemistry; 1989 Sep; 28(19):7919-27. PubMed ID: 2558714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytidine deaminase from Escherichia coli B. Purification and enzymatic and molecular properties.
    Vita A; Amici A; Cacciamani T; Lanciotti M; Magni G
    Biochemistry; 1985 Oct; 24(21):6020-4. PubMed ID: 3910086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrimidine nucleoside-catabolizing enzymes in Escherichia coli B.
    Magni G; Vita A; Amici A
    Curr Top Cell Regul; 1985; 26():433-43. PubMed ID: 3907995
    [No Abstract]   [Full Text] [Related]  

  • 7. Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis.
    Guo H; Rao N; Xu Q; Guo H
    J Am Chem Soc; 2005 Mar; 127(9):3191-7. PubMed ID: 15740159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Escherichia coli cytidine deaminase by a phosphapyrimidine nucleoside.
    Ashley GW; Bartlett PA
    J Biol Chem; 1984 Nov; 259(21):13621-7. PubMed ID: 6386818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1996 Jan; 35(3):948-54. PubMed ID: 8547277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The action of bacterial cytidine deaminase on 5,6-dihydrocytidine.
    Evans BE; Mitchell GN; Wolfenden R
    Biochemistry; 1975 Feb; 14(3):621-4. PubMed ID: 1090298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D; Wolfenden R
    Biochemistry; 1998 Aug; 37(34):11873-8. PubMed ID: 9718310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.
    Carlow DC; Carter CW; Mejlhede N; Neuhard J; Wolfenden R
    Biochemistry; 1999 Sep; 38(38):12258-65. PubMed ID: 10493793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-bound water and the shortcomings of a less than perfect transition state analogue.
    Snider MJ; Wolfenden R
    Biochemistry; 2001 Sep; 40(38):11364-71. PubMed ID: 11560484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of cytidine deaminase from escherichia coli.
    Ashley GW; Bartlett PA
    J Biol Chem; 1984 Nov; 259(21):13615-20. PubMed ID: 6386817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations affecting transition-state stabilization by residues coordinating zinc at the active site of cytidine deaminase.
    Smith AA; Carlow DC; Wolfenden R; Short SA
    Biochemistry; 1994 May; 33(21):6468-74. PubMed ID: 8204580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of cytidine deaminase and tetrahydrouridine interaction by use of ligand techniques.
    Stoller RG; Myers CE; Chabner BA
    Biochem Pharmacol; 1978 Jan; 27(1):53-9. PubMed ID: 619907
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase.
    Kim CH; Marquez VE; Mao DT; Haines DR; McCormack JJ
    J Med Chem; 1986 Aug; 29(8):1374-80. PubMed ID: 3735306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of pyrimidine bases and nucleosides in Bacillus subtilis.
    Rima BK; Takahashi I
    J Bacteriol; 1977 Feb; 129(2):574-9. PubMed ID: 402352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of cytidine aminohydrolase activity in Trypanosoma cruzi and Crithidia fasciculata.
    Kidder GW
    J Protozool; 1984 May; 31(2):298-300. PubMed ID: 6381719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transition state in pieces: major contributions of entropic effects to ligand binding by adenosine deaminase.
    Kati WM; Acheson SA; Wolfenden R
    Biochemistry; 1992 Aug; 31(32):7356-66. PubMed ID: 1510925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.