BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2692710)

  • 1. Structural and dynamic differences between normal and transforming N-ras gene products: a 31P and isotope-edited 1H NMR study.
    Campbell-Burk S
    Biochemistry; 1989 Nov; 28(24):9478-84. PubMed ID: 2692710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NMR comparison of the changes produced by different guanosine 5'-triphosphate analogs in wild-type and oncogenic mutant p21ras.
    Miller AF; Halkides CJ; Redfield AG
    Biochemistry; 1993 Jul; 32(29):7367-76. PubMed ID: 8338834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for strong hydrogen bonding in human N-ras p21.
    Redfield AG; Papastavros MZ
    Biochemistry; 1990 Apr; 29(14):3509-14. PubMed ID: 2191717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding of guanine nucleotide to N-ras p21--a phosphorous and proton magnetic resonance study.
    Grand RJ; Levine BA; Byrd PJ; Gallimore PH
    Oncogene; 1989 Mar; 4(3):355-61. PubMed ID: 2649849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR studies of the conformational change in human N-p21ras produced by replacement of bound GDP with the GTP analog GTP gamma S.
    Miller AF; Papastavros MZ; Redfield AG
    Biochemistry; 1992 Oct; 31(42):10208-16. PubMed ID: 1420142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR study of the phosphate-binding elements of Escherichia coli elongation factor Tu catalytic domain.
    Lowry DF; Cool RH; Redfield AG; Parmeggiani A
    Biochemistry; 1991 Nov; 30(45):10872-7. PubMed ID: 1932010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of guanosine 5'-diphosphate as bound to a human c-Ha-ras mutant protein: a nuclear Overhauser effect study.
    Ha JM; Ito Y; Kawai G; Miyazawa T; Miura K; Ohtsuka E; Noguchi S; Nishimura S; Yokoyama S
    Biochemistry; 1989 Oct; 28(21):8411-6. PubMed ID: 2690941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR study of the phosphate-binding loops of Thermus thermophilus elongation factor Tu.
    Lowry DF; Ahmadian MR; Redfield AG; Sprinzl M
    Biochemistry; 1992 Mar; 31(11):2977-82. PubMed ID: 1550823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of resonances from an oncogenic activating locus of human N-RAS-encoded p21 protein using isotope-edited NMR.
    Burk SC; Papastavros MZ; McCormick F; Redfield AG
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):817-20. PubMed ID: 2644645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy.
    Kraulis PJ; Domaille PJ; Campbell-Burk SL; Van Aken T; Laue ED
    Biochemistry; 1994 Mar; 33(12):3515-31. PubMed ID: 8142349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the active site of p21 ras by electron spin-echo envelope modulation spectroscopy with selective labeling: comparisons between GDP and GTP forms.
    Halkides CJ; Farrar CT; Larsen RG; Redfield AG; Singel DJ
    Biochemistry; 1994 Apr; 33(13):4019-35. PubMed ID: 8142406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific 1H and 15N resonance assignments and secondary structure of GDP-bound human c-Ha-Ras protein in solution.
    Muto Y; Yamasaki K; Ito Y; Yajima S; Masaki H; Uozumi T; Wälchli M; Nishimura S; Miyazawa T; Yokoyama S
    J Biomol NMR; 1993 Mar; 3(2):165-84. PubMed ID: 8477185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods.
    Hu JS; Redfield AG
    Biochemistry; 1993 Jul; 32(26):6763-72. PubMed ID: 8329399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency 94 GHz ENDOR characterization of the metal binding site in wild-type Ras x GDP and its oncogenic mutant G12V in frozen solution.
    Bennati M; Hertel MM; Fritscher J; Prisner TF; Weiden N; Hofweber R; Spörner M; Horn G; Kalbitzer HR
    Biochemistry; 2006 Jan; 45(1):42-50. PubMed ID: 16388579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural significance of the GTP-binding domain of ras p21 studied by site-directed mutagenesis.
    Clanton DJ; Lu YY; Blair DG; Shih TY
    Mol Cell Biol; 1987 Sep; 7(9):3092-7. PubMed ID: 3118192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of Gly-12-->Val mutant of p21(ras): dynamic inhibition mechanism.
    Futatsugi N; Tsuda M
    Biophys J; 2001 Dec; 81(6):3483-8. PubMed ID: 11721009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen bond interactions of G proteins with the guanine ring moiety of guanine nucleotides.
    Weng G; Chen CX; Balogh-Nair V; Callender R; Manor D
    Protein Sci; 1994 Jan; 3(1):22-9. PubMed ID: 8142894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton NMR studies of transforming and nontransforming H-ras p21 mutants.
    Schlichting I; John J; Frech M; Chardin P; Wittinghofer A; Zimmermann H; Rösch P
    Biochemistry; 1990 Jan; 29(2):504-11. PubMed ID: 2405906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein.
    Ito Y; Yamasaki K; Iwahara J; Terada T; Kamiya A; Shirouzu M; Muto Y; Kawai G; Yokoyama S; Laue ED; Wälchli M; Shibata T; Nishimura S; Miyazawa T
    Biochemistry; 1997 Jul; 36(30):9109-19. PubMed ID: 9230043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An isotope edited classical Raman difference spectroscopic study of the interactions of guanine nucleotides with elongation factor Tu and H-ras p21.
    Manor D; Weng GZ; Deng H; Cosloy S; Chen CX; Balogh-Nair V; Delaria K; Jurnak F; Callender R
    Biochemistry; 1991 Nov; 30(45):10914-20. PubMed ID: 1932015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.