These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26927978)
1. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme. Bolivar JM; Krämer CE; Ungerböck B; Mayr T; Nidetzky B Biotechnol Bioeng; 2016 Sep; 113(9):1862-72. PubMed ID: 26927978 [TBL] [Abstract][Full Text] [Related]
2. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions. Bolivar JM; Tribulato MA; Petrasek Z; Nidetzky B Biotechnol Bioeng; 2016 Nov; 113(11):2342-9. PubMed ID: 27216813 [TBL] [Abstract][Full Text] [Related]
3. Process intensification for O Bolivar JM; Mannsberger A; Thomsen MS; Tekautz G; Nidetzky B Biotechnol Bioeng; 2019 Mar; 116(3):503-514. PubMed ID: 30512199 [TBL] [Abstract][Full Text] [Related]
4. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Thomsen MS; Nidetzky B Biotechnol J; 2009 Jan; 4(1):98-107. PubMed ID: 18618472 [TBL] [Abstract][Full Text] [Related]
5. Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. Bolivar JM; Luley-Goedl C; Leitner E; Sawangwan T; Nidetzky B J Biotechnol; 2017 Sep; 257():131-138. PubMed ID: 28161416 [TBL] [Abstract][Full Text] [Related]
7. Development of microreactors with surface-immobilized biocatalysts for continuous transamination. Miložič N; Stojkovič G; Vogel A; Bouwes D; Žnidaršič-Plazl P N Biotechnol; 2018 Dec; 47():18-24. PubMed ID: 29758351 [TBL] [Abstract][Full Text] [Related]
8. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass. Bolivar JM; Nidetzky B Biotechnol Bioeng; 2012 Jun; 109(6):1490-8. PubMed ID: 22249953 [TBL] [Abstract][Full Text] [Related]
9. Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors. Bolivar JM; Valikhani D; Nidetzky B Biotechnol J; 2019 Mar; 14(3):e1800244. PubMed ID: 30091533 [TBL] [Abstract][Full Text] [Related]
10. Measurements of kinetic parameters in a microfluidic reactor. Kerby MB; Legge RS; Tripathi A Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816 [TBL] [Abstract][Full Text] [Related]
11. Biotransformations in microstructured reactors: more than flowing with the stream? Bolivar JM; Wiesbauer J; Nidetzky B Trends Biotechnol; 2011 Jul; 29(7):333-42. PubMed ID: 21546108 [TBL] [Abstract][Full Text] [Related]
12. Quantitating intraparticle O2 gradients in solid supported enzyme immobilizates: experimental determination of their role in limiting the catalytic effectiveness of immobilized glucose oxidase. Bolivar JM; Consolati T; Mayr T; Nidetzky B Biotechnol Bioeng; 2013 Aug; 110(8):2086-95. PubMed ID: 23436425 [TBL] [Abstract][Full Text] [Related]
13. Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports. Bolivar JM; Nidetzky B Langmuir; 2012 Jul; 28(26):10040-9. PubMed ID: 22668007 [TBL] [Abstract][Full Text] [Related]
14. Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Khang YH; Kim IW; Hah YR; Hwangbo JH; Kang KK Biotechnol Bioeng; 2003 May; 82(4):480-8. PubMed ID: 12632405 [TBL] [Abstract][Full Text] [Related]
15. Study of the geometry of open channels in a layer-bed-type microfluidic immobilized enzyme reactor. Nagy C; Huszank R; Gaspar A Anal Bioanal Chem; 2021 Oct; 413(25):6321-6332. PubMed ID: 34378068 [TBL] [Abstract][Full Text] [Related]
16. Immobilised enzyme microreactor for screening of multi-step bioconversions: characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. Matosevic S; Lye GJ; Baganz F J Biotechnol; 2011 Sep; 155(3):320-9. PubMed ID: 21807042 [TBL] [Abstract][Full Text] [Related]
17. Design of the Enzyme-Carrier Interface to Overcome the O Benítez-Mateos AI; Huber C; Nidetzky B; Bolivar JM; López-Gallego F ACS Appl Mater Interfaces; 2020 Dec; 12(50):56027-56038. PubMed ID: 33275418 [TBL] [Abstract][Full Text] [Related]
18. A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor. Stempfer G; Höll-Neugebauer B; Kopetzki E; Rudolph R Nat Biotechnol; 1996 Apr; 14(4):481-4. PubMed ID: 9630924 [TBL] [Abstract][Full Text] [Related]
19. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. Valikhani D; Bolivar JM; Viefhues M; McIlroy DN; Vrouwe EX; Nidetzky B ACS Appl Mater Interfaces; 2017 Oct; 9(40):34641-34649. PubMed ID: 28921951 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis. Toftgaard Pedersen A; de Carvalho TM; Sutherland E; Rehn G; Ashe R; Woodley JM Biotechnol Bioeng; 2017 Jun; 114(6):1222-1230. PubMed ID: 28186335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]