These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26928244)

  • 1. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte.
    Salunkhe RR; Young C; Tang J; Takei T; Ide Y; Kobayashi N; Yamauchi Y
    Chem Commun (Camb); 2016 Apr; 52(26):4764-7. PubMed ID: 26928244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.
    Fu Y; Cai X; Wu H; Lv Z; Hou S; Peng M; Yu X; Zou D
    Adv Mater; 2012 Nov; 24(42):5713-8. PubMed ID: 22936617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-Free Mechanochemical Synthesis of Nitrogen-Doped Nanoporous Carbon for Electrochemical Energy Storage.
    Schneidermann C; Jäckel N; Oswald S; Giebeler L; Presser V; Borchardt L
    ChemSusChem; 2017 Jun; 10(11):2416-2424. PubMed ID: 28436604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.
    Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D
    Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.
    Zhong H; Xu F; Li Z; Fu R; Wu D
    Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable Carbon/Carbon Supercapacitors Operating Down to -40 °C in Aqueous Electrolyte Made with Cholinium Salt.
    Abbas Q; Béguin F
    ChemSusChem; 2018 Mar; 11(5):975-984. PubMed ID: 29240966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interconnected V2O5 nanoporous network for high-performance supercapacitors.
    Saravanakumar B; Purushothaman KK; Muralidharan G
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4484-90. PubMed ID: 22913341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.
    Yang CH; Huang PL; Luo XF; Wang CH; Li C; Wu YH; Chang JK
    ChemSusChem; 2015 May; 8(10):1779-86. PubMed ID: 25900279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe
    Pant B; Pant HR; Park M
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.
    Ujjain SK; Bhatia R; Ahuja P; Attri P
    PLoS One; 2015; 10(7):e0131475. PubMed ID: 26153688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High voltage supercapacitors based on carbon-grafted NiO nanowires interfaced with an aprotic ionic liquid.
    Paravannoor A; Nair SV; Pattathil P; Manca M; Balakrishnan A
    Chem Commun (Camb); 2015 Apr; 51(28):6092-5. PubMed ID: 25742721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.
    Salunkhe RR; Tang J; Kamachi Y; Nakato T; Kim JH; Yamauchi Y
    ACS Nano; 2015 Jun; 9(6):6288-96. PubMed ID: 25978143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.
    He X; Zhang H; Xie K; Xia Y; Zhao Z; Wang X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2841-6. PubMed ID: 27455718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview.
    Ehsani A; Parsimehr H
    Chem Rec; 2020 Aug; 20(8):820-830. PubMed ID: 32212373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes.
    Chaikittisilp W; Hu M; Wang H; Huang HS; Fujita T; Wu KC; Chen LC; Yamauchi Y; Ariga K
    Chem Commun (Camb); 2012 Jul; 48(58):7259-61. PubMed ID: 22710974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor.
    Wang C; Xiong Y; Wang H; Sun Q
    J Colloid Interface Sci; 2018 Oct; 528():349-359. PubMed ID: 29860203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte.
    Young C; Salunkhe RR; Tang J; Hu CC; Shahabuddin M; Yanmaz E; Hossain MS; Kim JH; Yamauchi Y
    Phys Chem Chem Phys; 2016 Oct; 18(42):29308-29315. PubMed ID: 27731874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-grown oxy-hydroxide@ nanoporous metal electrode for high-performance supercapacitors.
    Kang J; Hirata A; Qiu HJ; Chen L; Ge X; Fujita T; Chen M
    Adv Mater; 2014 Jan; 26(2):269-72. PubMed ID: 24129961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.