These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 26928255)

  • 21. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates.
    Dimitriadis SI; Salis C; Linden D
    Clin Neurophysiol; 2018 Apr; 129(4):815-828. PubMed ID: 29477981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Machine Learning to Sleep Stage Classification.
    Smith A; Anand H; Milosavljevic S; Rentschler KM; Pocivavsek A; Valafar H
    Proc (Int Conf Comput Sci Comput Intell); 2021 Dec; 2021():349-354. PubMed ID: 36313065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals.
    Sharma M; Tiwari J; Acharya UR
    Int J Environ Res Public Health; 2021 Mar; 18(6):. PubMed ID: 33802799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models.
    Lewicke A; Sazonov E; Corwin MJ; Neuman M; Schuckers S;
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):108-18. PubMed ID: 18232352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel machine learning system for identifying sleep-wake states in mice.
    Fraigne JJ; Wang J; Lee H; Luke R; Pintwala SK; Peever JH
    Sleep; 2023 Jun; 46(6):. PubMed ID: 37021715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of feature extraction techniques and classifiers for finger movement recognition using surface electromyography signal.
    Phukpattaranont P; Thongpanja S; Anam K; Al-Jumaily A; Limsakul C
    Med Biol Eng Comput; 2018 Dec; 56(12):2259-2271. PubMed ID: 29911250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automatic sleep classifier for laboratory rodents.
    Chouvet G; Odet P; Valatx JL; Pujol JF
    Waking Sleeping; 1980; 4(1):9-31. PubMed ID: 7395199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput visual assessment of sleep stages in mice using machine learning.
    Geuther B; Chen M; Galante RJ; Han O; Lian J; George J; Pack AI; Kumar V
    Sleep; 2022 Feb; 45(2):. PubMed ID: 34718812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal.
    Radha M; Garcia-Molina G; Poel M; Tononi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1876-80. PubMed ID: 25570344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank.
    Sharma M; Goyal D; Achuth PV; Acharya UR
    Comput Biol Med; 2018 Jul; 98():58-75. PubMed ID: 29775912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging.
    Charbonnier S; Zoubek L; Lesecq S; Chapotot F
    Comput Biol Med; 2011 Jun; 41(6):380-9. PubMed ID: 21497802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models.
    Svetnik V; Wang TC; Xu Y; Hansen BJ; V Fox S
    J Neurosci Methods; 2020 May; 337():108668. PubMed ID: 32135210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic sleep staging from ventilator signals in non-invasive ventilation.
    Sady CC; Freitas US; Portmann A; Muir JF; Letellier C; Aguirre LA
    Comput Biol Med; 2013 Aug; 43(7):833-9. PubMed ID: 23746724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic sleep staging using fMRI functional connectivity data.
    Tagliazucchi E; von Wegner F; Morzelewski A; Borisov S; Jahnke K; Laufs H
    Neuroimage; 2012 Oct; 63(1):63-72. PubMed ID: 22743197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.
    Kassiri H; Chemparathy A; Salam MT; Boyce R; Adamantidis A; Genov R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):177-188. PubMed ID: 27333608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring.
    Li X; Cui L; Tao S; Chen J; Zhang X; Zhang GQ
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):375-385. PubMed ID: 28222004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.
    Shi J; Liu X; Li Y; Zhang Q; Li Y; Ying S
    J Neurosci Methods; 2015 Oct; 254():94-101. PubMed ID: 26192325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.