These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26928431)

  • 1. Evidence for spatial tuning of movement inhibition.
    Wattiez N; Poitou T; Rivaud-Péchoux S; Pouget P
    Exp Brain Res; 2016 Jul; 234(7):1957-1966. PubMed ID: 26928431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple spatial representations interact to increase reach accuracy when coordinating a saccade with a reach.
    Vazquez Y; Federici L; Pesaran B
    J Neurophysiol; 2017 Oct; 118(4):2328-2343. PubMed ID: 28768742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancelling of pursuit and saccadic eye movements in humans and monkeys.
    Kornylo K; Dill N; Saenz M; Krauzlis RJ
    J Neurophysiol; 2003 Jun; 89(6):2984-99. PubMed ID: 12783947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of history on saccade countermanding performance in humans and macaque monkeys.
    Emeric EE; Brown JW; Boucher L; Carpenter RH; Hanes DP; Harris R; Logan GD; Mashru RN; Paré M; Pouget P; Stuphorn V; Taylor TL; Schall JD
    Vision Res; 2007 Jan; 47(1):35-49. PubMed ID: 17081584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of Medial Frontal β-Bursts and Executive Control.
    Errington SP; Woodman GF; Schall JD
    J Neurosci; 2020 Nov; 40(48):9272-9282. PubMed ID: 33097634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
    Hanes DP; Patterson WF; Schall JD
    J Neurophysiol; 1998 Feb; 79(2):817-34. PubMed ID: 9463444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corollary discharge and spatial updating: when the brain is split, is space still unified?
    Colby CL; Berman RA; Heiser LM; Saunders RC
    Prog Brain Res; 2005; 149():187-205. PubMed ID: 16226585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early coding of reaching in the parietooccipital cortex.
    Battaglia-Mayer A; Ferraina S; Mitsuda T; Marconi B; Genovesio A; Onorati P; Lacquaniti F; Caminiti R
    J Neurophysiol; 2000 Apr; 83(4):2374-91. PubMed ID: 10758140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of emotional stimuli and oxytocin on inhibition ability and response execution in macaque monkeys.
    Mowlavi Vardanjani M; Ghasemian S; Sheibani V; A Mansouri F
    Behav Brain Res; 2021 Sep; 413():113409. PubMed ID: 34111470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response inhibition and response monitoring in a saccadic double-step task in schizophrenia.
    Thakkar KN; Schall JD; Logan GD; Park S
    Brain Cogn; 2015 Apr; 95():90-8. PubMed ID: 25769133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrophic degeneration of cerebellum impairs both the reactive and the proactive control of movement in the stop signal paradigm.
    Olivito G; Brunamonti E; Clausi S; Pani P; Chiricozzi FR; Giamundo M; Molinari M; Leggio M; Ferraina S
    Exp Brain Res; 2017 Oct; 235(10):2971-2981. PubMed ID: 28717819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate frontal eye fields. I. Single neurons discharging before saccades.
    Bruce CJ; Goldberg ME
    J Neurophysiol; 1985 Mar; 53(3):603-35. PubMed ID: 3981231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual salience of the stop signal affects the neuronal dynamics of controlled inhibition.
    Pani P; Giarrocco F; Giamundo M; Montanari R; Brunamonti E; Ferraina S
    Sci Rep; 2018 Sep; 8(1):14265. PubMed ID: 30250230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal performance in a countermanding saccade task.
    Wong-Lin K; Eckhoff P; Holmes P; Cohen JD
    Brain Res; 2010 Mar; 1318():178-87. PubMed ID: 20034481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1171-94. PubMed ID: 9084589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term changes in movement frequency do not alter the spatial tuning of saccade-related neurons in intraparietal cortex.
    Platt ML; Glimcher PW
    Exp Brain Res; 2000 Jun; 132(3):279-86. PubMed ID: 10883377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys.
    Schall JD
    J Neurophysiol; 1991 Aug; 66(2):530-58. PubMed ID: 1774585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Countermanding saccades in macaque.
    Hanes DP; Schall JD
    Vis Neurosci; 1995; 12(5):929-37. PubMed ID: 8924416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.