BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26928575)

  • 21. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop.
    Lu X; Ma O; Nguyen TA; Jones SN; Oren M; Donehower LA
    Cancer Cell; 2007 Oct; 12(4):342-54. PubMed ID: 17936559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving.
    Mai Z; Liu H
    J Theor Biol; 2009 Aug; 259(4):760-9. PubMed ID: 19422837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage.
    Iwamoto K; Hamada H; Eguchi Y; Okamoto M
    PLoS One; 2014; 9(7):e101333. PubMed ID: 25003668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis.
    Zhang T; Brazhnik P; Tyson JJ
    Cell Cycle; 2007 Jan; 6(1):85-94. PubMed ID: 17245126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53-dependent cell cycle control.
    Zhu YH; Zhang CW; Lu L; Demidov ON; Sun L; Yang L; Bulavin DV; Xiao ZC
    Stem Cells; 2009 Jun; 27(6):1433-42. PubMed ID: 19489034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells.
    Phelps M; Darley M; Primrose JN; Blaydes JP
    Cancer Res; 2003 May; 63(10):2616-23. PubMed ID: 12750288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A plausible model for bimodal p53 switch in DNA damage response.
    Sun T; Cui J
    FEBS Lett; 2014 Mar; 588(5):815-21. PubMed ID: 24486906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From structure to dynamics: frequency tuning in the p53-Mdm2 network I. Logical approach.
    Abou-Jaoudé W; Ouattara DA; Kaufman M
    J Theor Biol; 2009 Jun; 258(4):561-77. PubMed ID: 19233211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.
    Yan F; Liu H; Liu Z
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):248-57. PubMed ID: 23845991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamics of p53 in single cells: physiologically based ODE and reaction-diffusion PDE models.
    Eliaš J; Dimitrio L; Clairambault J; Natalini R
    Phys Biol; 2014 Aug; 11(4):045001. PubMed ID: 25075792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells.
    Zhou M; Gu L; Li F; Zhu Y; Woods WG; Findley HW
    J Pharmacol Exp Ther; 2002 Oct; 303(1):124-31. PubMed ID: 12235242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation.
    Takekawa M; Adachi M; Nakahata A; Nakayama I; Itoh F; Tsukuda H; Taya Y; Imai K
    EMBO J; 2000 Dec; 19(23):6517-26. PubMed ID: 11101524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic noise and Hill dynamics in the p53 system.
    Liu B; Yan S; Wang Q
    J Theor Biol; 2011 Jan; 269(1):104-8. PubMed ID: 20974153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple stochastic model for the feedback circuit between p16INK4a and p53 mediated by p38MAPK: implications for senescence and apoptosis.
    de Oliveira LR; Mombach JC; Castellani G
    Mol Biosyst; 2015 Nov; 11(11):2955-63. PubMed ID: 26281034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise.
    Puszynski K; Gandolfi A; d'Onofrio A
    PLoS Comput Biol; 2014 Dec; 10(12):e1003991. PubMed ID: 25504419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells.
    Bhattacharya S; Ray RM; Johnson LR
    Cell Signal; 2009 Apr; 21(4):509-22. PubMed ID: 19136059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-based investigation of the transcriptional activity of p53 and its feedback loop regulation via 14-3-3σ.
    Vera J; Nikolov S; Lai X; Singh A; Wolkenhauer O
    IET Syst Biol; 2011 Sep; 5(5):293-307. PubMed ID: 22010756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets.
    Taira N; Yoshida K
    Histol Histopathol; 2012 Apr; 27(4):437-43. PubMed ID: 22374721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress.
    Li J; Tan J; Zhuang L; Banerjee B; Yang X; Chau JF; Lee PL; Hande MP; Li B; Yu Q
    Cancer Res; 2007 Dec; 67(23):11317-26. PubMed ID: 18056458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The enhancement of stability of p53 in MTBP induced p53-MDM2 regulatory network.
    Alam MJ; Fatima N; Devi GR; Ravins ; Singh RK
    Biosystems; 2012 Nov; 110(2):74-83. PubMed ID: 23059707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.