These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 26928668)
1. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Leung SS; Parumasivam T; Gao FG; Carrigy NB; Vehring R; Finlay WH; Morales S; Britton WJ; Kutter E; Chan HK Pharm Res; 2016 Jun; 33(6):1486-96. PubMed ID: 26928668 [TBL] [Abstract][Full Text] [Related]
2. Effect of storage temperature on the stability of spray dried bacteriophage powders. Leung SSY; Parumasivam T; Nguyen A; Gengenbach T; Carter EA; Carrigy NB; Wang H; Vehring R; Finlay WH; Morales S; Britton WJ; Kutter E; Chan HK Eur J Pharm Biopharm; 2018 Jun; 127():213-222. PubMed ID: 29486303 [TBL] [Abstract][Full Text] [Related]
3. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Leung SSY; Parumasivam T; Gao FG; Carter EA; Carrigy NB; Vehring R; Finlay WH; Morales S; Britton WJ; Kutter E; Chan HK Int J Pharm; 2017 Apr; 521(1-2):141-149. PubMed ID: 28163231 [TBL] [Abstract][Full Text] [Related]
4. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation. Yu H; Teo J; Chew JW; Hadinoto K Int J Pharm; 2016 Feb; 499(1-2):38-46. PubMed ID: 26757148 [TBL] [Abstract][Full Text] [Related]
5. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. D'Addio SM; Chan JG; Kwok PC; Benson BR; Prud'homme RK; Chan HK Pharm Res; 2013 Nov; 30(11):2891-901. PubMed ID: 23893019 [TBL] [Abstract][Full Text] [Related]
6. Protein inhalation powders: spray drying vs spray freeze drying. Maa YF; Nguyen PA; Sweeney T; Shire SJ; Hsu CC Pharm Res; 1999 Feb; 16(2):249-54. PubMed ID: 10100310 [TBL] [Abstract][Full Text] [Related]
7. Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation. Chang RYK; Chen K; Wang J; Wallin M; Britton W; Morales S; Kutter E; Li J; Chan HK Antimicrob Agents Chemother; 2018 Feb; 62(2):. PubMed ID: 29158280 [TBL] [Abstract][Full Text] [Related]
8. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related]
9. Inhalable combination powder formulations of phage and ciprofloxacin for P. aeruginosa respiratory infections. Lin Y; Chang RYK; Britton WJ; Morales S; Kutter E; Li J; Chan HK Eur J Pharm Biopharm; 2019 Sep; 142():543-552. PubMed ID: 31398437 [TBL] [Abstract][Full Text] [Related]
10. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. Sonner C; Maa YF; Lee G J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840 [TBL] [Abstract][Full Text] [Related]
11. Spray-Freeze Drying: a Suitable Method for Aerosol Delivery of Antibodies in the Presence of Trehalose and Cyclodextrins. Pouya MA; Daneshmand B; Aghababaie S; Faghihi H; Vatanara A AAPS PharmSciTech; 2018 Jul; 19(5):2247-2254. PubMed ID: 29740758 [TBL] [Abstract][Full Text] [Related]
12. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. Matinkhoo S; Lynch KH; Dennis JJ; Finlay WH; Vehring R J Pharm Sci; 2011 Dec; 100(12):5197-205. PubMed ID: 22020816 [TBL] [Abstract][Full Text] [Related]
13. Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. Chang RY; Wong J; Mathai A; Morales S; Kutter E; Britton W; Li J; Chan HK Eur J Pharm Biopharm; 2017 Dec; 121():1-13. PubMed ID: 28890220 [TBL] [Abstract][Full Text] [Related]
14. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Liao Q; Yip L; Chow MYT; Chow SF; Chan HK; Kwok PCL; Lam JKW Int J Pharm; 2019 Apr; 560():144-154. PubMed ID: 30731259 [TBL] [Abstract][Full Text] [Related]
15. Spray freeze drying for dry powder inhalation of nanoparticles. Ali ME; Lamprecht A Eur J Pharm Biopharm; 2014 Aug; 87(3):510-7. PubMed ID: 24657824 [TBL] [Abstract][Full Text] [Related]
16. The Influence of Formulation Components and Environmental Humidity on Spray-Dried Phage Powders for Treatment of Respiratory Infections Caused by Yan W; He R; Tang X; Tian B; Liu Y; Tong Y; To KKW; Leung SSY Pharmaceutics; 2021 Jul; 13(8):. PubMed ID: 34452123 [TBL] [Abstract][Full Text] [Related]
17. Storage stability of inhalable phage powders containing lactose at ambient conditions. Chang RYK; Wallin M; Kutter E; Morales S; Britton W; Li J; Chan HK Int J Pharm; 2019 Apr; 560():11-18. PubMed ID: 30710661 [TBL] [Abstract][Full Text] [Related]
18. Inhalable Spray-Freeze-Dried Powder with L-Leucine that Delivers Particles Independent of Inspiratory Flow Pattern and Inhalation Device. Otake H; Okuda T; Hira D; Kojima H; Shimada Y; Okamoto H Pharm Res; 2016 Apr; 33(4):922-31. PubMed ID: 26643921 [TBL] [Abstract][Full Text] [Related]
19. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders. Wanning S; Süverkrüp R; Lamprecht A Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097 [TBL] [Abstract][Full Text] [Related]