These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26928722)
1. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device. Kusano M; Kobayashi M; Iizuka Y; Fukushima A; Saito K BMC Res Notes; 2016 Feb; 9():133. PubMed ID: 26928722 [TBL] [Abstract][Full Text] [Related]
2. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey. Jerković I; Kuś PM Molecules; 2017 Nov; 22(11):. PubMed ID: 29113106 [TBL] [Abstract][Full Text] [Related]
3. Development and performance evaluation of a novel dynamic headspace vacuum transfer "In Trap" extraction method for volatile compounds and comparison with headspace solid-phase microextraction and headspace in-tube extraction. Fuchsmann P; Tena Stern M; Bischoff P; Badertscher R; Breme K; Walther B J Chromatogr A; 2019 Sep; 1601():60-70. PubMed ID: 31178163 [TBL] [Abstract][Full Text] [Related]
5. Discrimination and characterization of volatile organic compounds in Lonicerae Japonicae flos and Lonicerae flos using multivariate statistics combined with headspace gas chromatography-ion mobility spectrometry and headspace solid-phase microextraction gas chromatography-mass spectrometry techniques. Wu T; Yin J; Wu X; Li W; Bie S; Zhao J; Song X; Yu H; Li Z Rapid Commun Mass Spectrom; 2024 Mar; 38(6):e9693. PubMed ID: 38356085 [TBL] [Abstract][Full Text] [Related]
6. Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant. Gholivand MB; Piryaei M; Abolghasemi MM Anal Chim Acta; 2011 Sep; 701(1):1-5. PubMed ID: 21763801 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Volatile Metabolites Emitted In-Vivo from Cold-Hardy Grapes during Ripening Using SPME and GC-MS: A Proof-of-Concept. Rice S; Maurer DL; Fennell A; Dharmadhikari M; Koziel JA Molecules; 2019 Feb; 24(3):. PubMed ID: 30717185 [TBL] [Abstract][Full Text] [Related]
8. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Aprea E; Gika H; Carlin S; Theodoridis G; Vrhovsek U; Mattivi F J Chromatogr A; 2011 Jul; 1218(28):4517-24. PubMed ID: 21641602 [TBL] [Abstract][Full Text] [Related]
9. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040 [TBL] [Abstract][Full Text] [Related]
10. Analysis of volatile compounds from Siraitia grosvenorii by headspace solid-phase microextraction and gas chromatography-quadrupole time-of-flight mass spectrometry. Xia Y; Zhang F; Wang W; Guo Y J Chromatogr Sci; 2015 Jan; 53(1):1-7. PubMed ID: 24668041 [TBL] [Abstract][Full Text] [Related]
11. Graphene-supported zinc oxide solid-phase microextraction coating with enhanced selectivity and sensitivity for the determination of sulfur volatiles in Allium species. Zhang S; Du Z; Li G J Chromatogr A; 2012 Oct; 1260():1-8. PubMed ID: 22985527 [TBL] [Abstract][Full Text] [Related]
12. Development of a Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots. Stierlin É; Nicolè F; Fernandez X; Michel T Chem Biodivers; 2019 Aug; 16(8):e1900280. PubMed ID: 31211502 [TBL] [Abstract][Full Text] [Related]
13. Evaluating polyvinylidene fluoride - carbon black composites as solid phase microextraction coatings for the detection of urinary volatile organic compounds by gas chromatography-mass spectrometry. Woollam M; Grocki P; Schulz E; Siegel AP; Deiss F; Agarwal M J Chromatogr A; 2022 Dec; 1685():463606. PubMed ID: 36370629 [TBL] [Abstract][Full Text] [Related]
14. An Optimized SPME-GC-MS Method for Volatile Metabolite Profiling of Different Alfalfa ( Yang DS; Lei Z; Bedair M; Sumner LW Molecules; 2021 Oct; 26(21):. PubMed ID: 34770882 [TBL] [Abstract][Full Text] [Related]
15. Volatile constituents of Chinese chive (Allium tuberosum Rottl. ex Sprengel) and rakkyo (Allium chinense G. Don). Pino JA; Fuentes V; Correa MT J Agric Food Chem; 2001 Mar; 49(3):1328-30. PubMed ID: 11312859 [TBL] [Abstract][Full Text] [Related]
16. Solid-phase microextraction of volatile organic compounds released from leaves and flowers of Artemisia fragrans, followed by GC and GC/MS analysis. Movafeghi A; Djozan Dj; Torbati S Nat Prod Res; 2010 Aug; 24(13):1235-42. PubMed ID: 20645210 [TBL] [Abstract][Full Text] [Related]
18. A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Mascrez S; Psillakis E; Purcaro G Anal Chim Acta; 2020 Mar; 1103():106-114. PubMed ID: 32081174 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Headspace Solid-Phase Micro-Extraction Conditions (HS-SPME) and Identification of Major Volatile Aroma-Active Compounds in Chinese Chive ( Xie B; Wu Q; Wei S; Li H; Wei J; Hanif M; Li J; Liu Z; Xiao X; Yu J Molecules; 2022 Apr; 27(8):. PubMed ID: 35458622 [TBL] [Abstract][Full Text] [Related]
20. Analytical strategies based on multiple headspace extraction for the quantitative analysis of aroma components in mushrooms. San Román I; Alonso ML; Bartolomé L; Alonso RM; Fañanás R Talanta; 2014 Jun; 123():207-17. PubMed ID: 24725884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]