BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26929043)

  • 1. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.
    Pinyou P; Ruff A; Pöller S; Ma S; Ludwig R; Schuhmann W
    Chemistry; 2016 Apr; 22(15):5319-26. PubMed ID: 26929043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.
    Zafar MN; Wang X; Sygmund C; Ludwig R; Leech D; Gorton L
    Anal Chem; 2012 Jan; 84(1):334-41. PubMed ID: 22091984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials.
    Zafar MN; Tasca F; Boland S; Kujawa M; Patel I; Peterbauer CK; Leech D; Gorton L
    Bioelectrochemistry; 2010 Nov; 80(1):38-42. PubMed ID: 20466600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells.
    Zafar MN; Beden N; Leech D; Sygmund C; Ludwig R; Gorton L
    Anal Bioanal Chem; 2012 Feb; 402(6):2069-77. PubMed ID: 22222911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes.
    Salaj-Kosla U; Scanlon MD; Baumeister T; Zahma K; Ludwig R; Ó Conghaile P; MacAodha D; Leech D; Magner E
    Anal Bioanal Chem; 2013 Apr; 405(11):3823-30. PubMed ID: 23274559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling osmium complexes to epoxy-functionalised polymers to provide mediated enzyme electrodes for glucose oxidation.
    Ó Conghaile P; Pöller S; MacAodha D; Schuhmann W; Leech D
    Biosens Bioelectron; 2013 May; 43():30-7. PubMed ID: 23274194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing.
    Becker JM; Lielpetere A; Szczesny J; Bichon S; Gounel S; Mano N; Schuhmann W
    Bioelectrochemistry; 2023 Feb; 149():108314. PubMed ID: 36335789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers.
    Pinyou P; Ruff A; Pöller S; Alsaoub S; Leimkühler S; Wollenberger U; Schuhmann W
    Bioelectrochemistry; 2016 Jun; 109():24-30. PubMed ID: 26775204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oxygen-reducing biocathode with "oxygen tanks".
    Xiao X; Leech D; Zhang J
    Chem Commun (Camb); 2020 Aug; 56(68):9767-9770. PubMed ID: 32701109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications.
    Fusco G; Göbel G; Zanoni R; Bracciale MP; Favero G; Mazzei F; Lisdat F
    Biosens Bioelectron; 2018 Jul; 112():8-17. PubMed ID: 29684749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wired pyrroloquinoline quinone soluble glucose dehydrogenase enzyme electrodes operating at unprecedented low redox potential.
    Flexer V; Mano N
    Anal Chem; 2014 Mar; 86(5):2465-73. PubMed ID: 24475934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediated glucose enzyme electrodes by cross-linking films of osmium redox complexes and glucose oxidase on electrodes.
    Ó Conghaile P; Kamireddy S; MacAodha D; Kavanagh P; Leech D
    Anal Bioanal Chem; 2013 Apr; 405(11):3807-12. PubMed ID: 23307119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable biofuel cell with enzyme-modified conductive textiles.
    Ogawa Y; Takai Y; Kato Y; Kai H; Miyake T; Nishizawa M
    Biosens Bioelectron; 2015 Dec; 74():947-52. PubMed ID: 26257187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications.
    Ravenna Y; Xia L; Gun J; Mikhaylov AA; Medvedev AG; Lev O; Alfonta L
    Anal Chem; 2015 Oct; 87(19):9567-71. PubMed ID: 26334692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.
    Slaughter G; Kulkarni T
    Sci Rep; 2017 May; 7(1):1471. PubMed ID: 28469179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.