These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26929056)

  • 1. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the control of the MIT-skywalker.
    Artemiadis PK; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIT-Skywalker: Evaluating comfort of bicycle/saddle seat.
    Goncalves RS; Hamilton T; Daher AR; Hirai H; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():516-520. PubMed ID: 28813872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Robotic assisted treadmill therapy in children with cerebral palsy].
    Borggräfe I; Meyer-Heim A; Heinen F
    MMW Fortschr Med; 2009 Oct; 151 Suppl 3():123-6. PubMed ID: 20623939
    [No Abstract]   [Full Text] [Related]  

  • 5. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback.
    Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M
    J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
    Veneman JF; Kruidhof R; Hekman EE; Ekkelenkamp R; Van Asseldonk EH; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):379-86. PubMed ID: 17894270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report.
    Bayón C; Lerma S; Ramírez O; Serrano JI; Del Castillo MD; Raya R; Belda-Lois JM; Martínez I; Rocon E
    J Neuroeng Rehabil; 2016 Nov; 13(1):98. PubMed ID: 27842562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an interactive upper extremity gestural robotic feedback system: from bench to reality.
    Wood KA; Lathan CE; Kaufman KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5973-6. PubMed ID: 19964144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy.
    Drużbicki M; Rusek W; Szczepanik M; Dudek J; Snela S
    Acta Bioeng Biomech; 2010; 12(3):53-8. PubMed ID: 21243970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a robotic walker for individuals with cerebral palsy.
    Alazem H; McCormick A; Nicholls SG; Vilé E; Adler R; Tibi G
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):643-651. PubMed ID: 31012754
    [No Abstract]   [Full Text] [Related]  

  • 20. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.