These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 26929056)
41. A system to integrate electrical stimulation with robotically controlled treadmill training to rehabilitate stepping after spinal cord injury. Chao T; Askari S; De Leon R; Won D IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):730-7. PubMed ID: 22692941 [TBL] [Abstract][Full Text] [Related]
42. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial. Kim SJ; Kwak EE; Park ES; Cho SR Clin Rehabil; 2012 Oct; 26(10):904-14. PubMed ID: 22308559 [TBL] [Abstract][Full Text] [Related]
43. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [TBL] [Abstract][Full Text] [Related]
44. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports. Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914 [TBL] [Abstract][Full Text] [Related]
45. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Borggraefe I; Schaefer JS; Klaiber M; Dabrowski E; Ammann-Reiffer C; Knecht B; Berweck S; Heinen F; Meyer-Heim A Eur J Paediatr Neurol; 2010 Nov; 14(6):496-502. PubMed ID: 20138788 [TBL] [Abstract][Full Text] [Related]
46. Control of stair ascent and descent with a powered transfemoral prosthesis. Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120 [TBL] [Abstract][Full Text] [Related]
47. Enhancing service delivering, improving quality of life, preserving independence through assistive technology. Annicchiarico R Stud Health Technol Inform; 2012; 180():14-8. PubMed ID: 22874143 [TBL] [Abstract][Full Text] [Related]
48. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator. Chen G; Qi P; Guo Z; Yu H IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222 [TBL] [Abstract][Full Text] [Related]
49. Pediatric robotic rehabilitation: Current knowledge and future trends in treating children with sensorimotor impairments. Michmizos KP; Krebs HI NeuroRehabilitation; 2017; 41(1):69-76. PubMed ID: 28505989 [TBL] [Abstract][Full Text] [Related]
50. Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation. Collantes I; Asin G; Moreno JC; Pons JL Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4855-8. PubMed ID: 23367015 [TBL] [Abstract][Full Text] [Related]
51. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648 [TBL] [Abstract][Full Text] [Related]
52. VI.3. Rehabilitation robotics. Munih M; Bajd T Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204 [TBL] [Abstract][Full Text] [Related]
53. Assessment of walking performance in robot-assisted gait training: a novel approach based on empirical data. Banz R; Riener R; Lünenburger L; Bolliger M Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1977-80. PubMed ID: 19163079 [TBL] [Abstract][Full Text] [Related]
54. Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy. El-Shamy SM; Abd El Kafy EM Disabil Rehabil; 2014; 36(14):1176-83. PubMed ID: 24032716 [TBL] [Abstract][Full Text] [Related]
55. A robotic device for studying rodent locomotion after spinal cord injury. Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832 [TBL] [Abstract][Full Text] [Related]
56. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Labruyère R; Gerber CN; Birrer-Brütsch K; Meyer-Heim A; van Hedel HJ Res Dev Disabil; 2013 Nov; 34(11):3906-15. PubMed ID: 24025439 [TBL] [Abstract][Full Text] [Related]
57. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb. De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918 [TBL] [Abstract][Full Text] [Related]
58. Virtual Reality environment assisting post stroke hand rehabilitation: case report. Tsoupikova D; Stoykov N; Kamper D; Vick R Stud Health Technol Inform; 2013; 184():458-64. PubMed ID: 23400202 [TBL] [Abstract][Full Text] [Related]
59. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761 [TBL] [Abstract][Full Text] [Related]
60. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects. Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]