BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 2692996)

  • 1. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size.
    Chen TL; Manuelidis L
    Chromosoma; 1989 Nov; 98(5):309-16. PubMed ID: 2692996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands.
    Korenberg JR; Rykowski MC
    Cell; 1988 May; 53(3):391-400. PubMed ID: 3365767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated DNA of the human Y chromosome.
    Smith KD; Young KE; Talbot CC; Schmeckpeper BJ
    Development; 1987; 101 Suppl():77-92. PubMed ID: 2846258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel classes of mouse repeated DNAs.
    Manuelidis L
    Nucleic Acids Res; 1980 Aug; 8(15):3247-58. PubMed ID: 6160469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pig genome analysis: differential distribution of SINE and LINE sequences is less pronounced than in the human and mouse genomes.
    Thomsen PD; Miller JR
    Mamm Genome; 1996 Jan; 7(1):42-6. PubMed ID: 8903727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal and nuclear distribution of the HindIII 1.9-kb human DNA repeat segment.
    Manuelidis L; Ward DC
    Chromosoma; 1984; 91(1):28-38. PubMed ID: 6098426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of interspersed repeats (Alu and Kpn) on NotI restriction fragments of human chromosome 21.
    Sainz J; Pevny L; Wu Y; Cantor CR; Smith CL
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):1080-4. PubMed ID: 1736290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization.
    Boyle AL; Ballard SG; Ward DC
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7757-61. PubMed ID: 2170987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication time of interspersed repetitive DNA sequences in hamsters.
    Holmquist GP; Caston LA
    Biochim Biophys Acta; 1986 Nov; 868(2-3):164-77. PubMed ID: 3533156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual molecular characteristics of a repeat sequence island within a Giemsa-positive band on the mouse X chromosome.
    Nasir J; Fisher EM; Brockdorff N; Disteche CM; Lyon MF; Brown SD
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):399-403. PubMed ID: 2296595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-amplification of L1 line elements with localised low copy repeats in Giemsa dark bands: implications for genome organisation.
    Nasir J; Maconochie MK; Brown SD
    Nucleic Acids Res; 1991 Jun; 19(12):3255-60. PubMed ID: 2062641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments.
    Tolstonog GV; Wang X; Shoeman R; Traub P
    DNA Cell Biol; 2000 Nov; 19(11):647-77. PubMed ID: 11098216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of highly and moderately repetitive 500 bp Eco RI fragments from Xenopus laevis DNA.
    Hummel S; Meyerhof W; Korge E; Knöchel W
    Nucleic Acids Res; 1984 Jun; 12(12):4921-38. PubMed ID: 6330690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes.
    Arn PH; Li X; Smith C; Hsu M; Schwartz DC; Jabs EW
    Mamm Genome; 1991; 1(4):249-54. PubMed ID: 1665375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration site preferences of endogenous retroviruses.
    Taruscio D; Manuelidis L
    Chromosoma; 1991 Dec; 101(3):141-56. PubMed ID: 1790730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of the lampbrush loop pair Nooses on the Y chromosome of Drosophila hydei by fluorescence in situ hybridization.
    Hochstenbach R; Wilbrink M; Suijkerbuijk R; Hennig W
    Chromosoma; 1993 Sep; 102(8):546-52. PubMed ID: 8243166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs.
    Unsal K; Morgan GT
    J Mol Biol; 1995 May; 248(4):812-23. PubMed ID: 7752242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs.
    Ogiwara I; Miya M; Ohshima K; Okada N
    Mol Biol Evol; 1999 Sep; 16(9):1238-50. PubMed ID: 10486979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector.
    Riethman HC; Moyzis RK; Meyne J; Burke DT; Olson MV
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6240-4. PubMed ID: 2668959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.