These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26930130)
1. Spectroscopic and Theoretical Study of Cu(I) Binding to His111 in the Human Prion Protein Fragment 106-115. Arcos-López T; Qayyum M; Rivillas-Acevedo L; Miotto MC; Grande-Aztatzi R; Fernández CO; Hedman B; Hodgson KO; Vela A; Solomon EI; Quintanar L Inorg Chem; 2016 Mar; 55(6):2909-22. PubMed ID: 26930130 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic and electronic structure studies of copper(II) binding to His111 in the human prion protein fragment 106-115: evaluating the role of protons and methionine residues. Rivillas-Acevedo L; Grande-Aztatzi R; Lomelí I; García JE; Barrios E; Teloxa S; Vela A; Quintanar L Inorg Chem; 2011 Mar; 50(5):1956-72. PubMed ID: 21261254 [TBL] [Abstract][Full Text] [Related]
3. Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Klewpatinond M; Viles JH Biochem J; 2007 Jun; 404(3):393-402. PubMed ID: 17331076 [TBL] [Abstract][Full Text] [Related]
4. Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein. Valensin D; Padula EM; Hecel A; Luczkowski M; Kozlowski H J Inorg Biochem; 2016 Feb; 155():26-35. PubMed ID: 26606290 [TBL] [Abstract][Full Text] [Related]
5. Amyloid β Perturbs Cu(II) Binding to the Prion Protein in a Site-Specific Manner: Insights into Its Potential Neurotoxic Mechanisms. Posadas Y; Parra-Ojeda L; Perez-Cruz C; Quintanar L Inorg Chem; 2021 Jun; 60(12):8958-8972. PubMed ID: 34043332 [TBL] [Abstract][Full Text] [Related]
6. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region. Sánchez-López C; Quintanar L J Inorg Biochem; 2022 Mar; 228():111686. PubMed ID: 34929540 [TBL] [Abstract][Full Text] [Related]
7. Both Met(109) and Met(112) are utilized for Cu(II) coordination by the amyloidogenic fragment of the human prion protein at physiological pH. Shearer J; Soh P; Lentz S J Inorg Biochem; 2008 Dec; 102(12):2103-13. PubMed ID: 18778855 [TBL] [Abstract][Full Text] [Related]
8. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Miura T; Sasaki S; Toyama A; Takeuchi H Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778 [TBL] [Abstract][Full Text] [Related]
9. The effect of a membrane-mimicking environment on the interactions of Cu Hecel A; Draghi S; Valensin D; Kozlowski H Dalton Trans; 2017 Jun; 46(24):7758-7769. PubMed ID: 28589973 [TBL] [Abstract][Full Text] [Related]
10. Real-time kinetics of discontinuous and highly conformational metal-ion binding sites of prion protein. Treiber C; Thompsett AR; Pipkorn R; Brown DR; Multhaup G J Biol Inorg Chem; 2007 Jun; 12(5):711-20. PubMed ID: 17345106 [TBL] [Abstract][Full Text] [Related]
11. The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH. Shearer J; Soh P Inorg Chem; 2007 Feb; 46(3):710-9. PubMed ID: 17257012 [TBL] [Abstract][Full Text] [Related]
12. Structural models for Cu(II) bound to the fragment 92-96 of the human prion protein. Grande-Aztatzi R; Rivillas-Acevedo L; Quintanar L; Vela A J Phys Chem B; 2013 Jan; 117(3):789-99. PubMed ID: 23240680 [TBL] [Abstract][Full Text] [Related]
13. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. Jones CE; Abdelraheim SR; Brown DR; Viles JH J Biol Chem; 2004 Jul; 279(31):32018-27. PubMed ID: 15145944 [TBL] [Abstract][Full Text] [Related]
14. Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. Jones CE; Klewpatinond M; Abdelraheim SR; Brown DR; Viles JH J Mol Biol; 2005 Mar; 346(5):1393-407. PubMed ID: 15713489 [TBL] [Abstract][Full Text] [Related]
15. Revisit the effect of fibrillization on functions of prion protein from the perspective of Cu(II) binding. Qi X; McGuirl M Biochem Biophys Res Commun; 2018 Sep; 503(1):32-37. PubMed ID: 29807014 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic and spectroscopic investigation on the role of Met residues in Cu(II) binding to the non-octarepeat site of the human prion protein. Remelli M; Valensin D; Toso L; Gralka E; Guerrini R; Marzola E; Kozłowski H Metallomics; 2012 Aug; 4(8):794-806. PubMed ID: 22791135 [TBL] [Abstract][Full Text] [Related]
17. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Viles JH; Cohen FE; Prusiner SB; Goodin DB; Wright PE; Dyson HJ Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2042-7. PubMed ID: 10051591 [TBL] [Abstract][Full Text] [Related]
18. Complex formation processes and metal ion catalyzed oxidation of model peptides related to the metal binding site of the human prion protein. Csire G; Turi I; Sóvágó I; Kárpáti E; Kállay C J Inorg Biochem; 2020 Feb; 203():110927. PubMed ID: 31810042 [TBL] [Abstract][Full Text] [Related]
19. Neuroprotective alpha-cleavage of the human prion protein significantly impacts Cu(ii) coordination at its His111 site. Sánchez-López C; Fernández CO; Quintanar L Dalton Trans; 2018 Jul; 47(28):9274-9282. PubMed ID: 29417110 [TBL] [Abstract][Full Text] [Related]
20. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein. McDonald A; Pushie MJ; Millhauser GL; George GN J Phys Chem B; 2013 Nov; 117(44):13822-41. PubMed ID: 24102071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]