These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 26930140)

  • 21. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Strategy for Fabrication of Polyamide 66/Nanohydroxyapatite Composite Bone Repair Scaffolds by Low-Temperature Three-Dimensional Printing.
    Hu J; Wei J; Liu J; Yuan L; Li Y; Luo X; Li Y; Li J
    ACS Biomater Sci Eng; 2024 Jun; 10(6):4073-4084. PubMed ID: 38752228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration.
    Chen S; Shi Y; Zhang X; Ma J
    J Biomed Mater Res A; 2019 Nov; 107(11):2512-2521. PubMed ID: 31319006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.
    Lai Y; Cao H; Wang X; Chen S; Zhang M; Wang N; Yao Z; Dai Y; Xie X; Zhang P; Yao X; Qin L
    Biomaterials; 2018 Jan; 153():1-13. PubMed ID: 29096397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration.
    Li X; Wang Y; Wang Z; Qi Y; Li L; Zhang P; Chen X; Huang Y
    Macromol Biosci; 2018 Jun; 18(6):e1800068. PubMed ID: 29687630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits.
    Zhang H; Zhou Y; Yu N; Ma H; Wang K; Liu J; Zhang W; Cai Z; He Y
    Acta Biomater; 2019 Jun; 91():82-98. PubMed ID: 30986527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion.
    Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 3D-Printed Polycaprolactone/Marine Collagen Scaffold Reinforced with Carbonated Hydroxyapatite from Fish Bones for Bone Regeneration.
    Kim SC; Heo SY; Oh GW; Yi M; Jung WK
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration.
    Yu L; Rowe DW; Perera IP; Zhang J; Suib SL; Xin X; Wei M
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18235-18249. PubMed ID: 32212615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration.
    Teixeira S; Fernandes MH; Ferraz MP; Monteiro FJ
    J Biomed Mater Res A; 2010 Oct; 95(1):1-8. PubMed ID: 20740596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and physicochemical, in vitro and in vivo evaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone.
    Despang F; Bernhardt A; Lode A; Dittrich R; Hanke T; Shenoy SJ; Mani S; John A; Gelinsky M
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E152-66. PubMed ID: 23585334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-Printed Atsttrin-Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement.
    Wang Q; Xia Q; Wu Y; Zhang X; Wen F; Chen X; Zhang S; Heng BC; He Y; Ouyang HW
    Adv Healthc Mater; 2015 Aug; 4(11):1701-8. PubMed ID: 26085382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO
    Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the permeability of lyophilized collagen-hydroxyapatite scaffolds for cell-based bone regeneration with a gelatin porogen.
    Villa MM; Wang L; Huang J; Rowe DW; Wei M
    J Biomed Mater Res B Appl Biomater; 2016 Nov; 104(8):1580-1590. PubMed ID: 26305733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.