BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26930396)

  • 1. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.
    Arya P; Acharya V
    PLoS One; 2016; 11(3):e0150634. PubMed ID: 26930396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.
    Arya P; Acharya V
    Mol Genet Genomics; 2018 Feb; 293(1):17-31. PubMed ID: 28900732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain.
    Aravind L; Iyer LM; Leipe DD; Koonin EV
    Genome Biol; 2004; 5(5):R30. PubMed ID: 15128444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events.
    Urbach JM; Ausubel FM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1063-1068. PubMed ID: 28096345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation.
    Gangwar D; Kalita MK; Gupta D; Chauhan VS; Mohmmed A
    Malar J; 2009 Apr; 8():69. PubMed ID: 19374766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations.
    Hamada M; Shoguchi E; Shinzato C; Kawashima T; Miller DJ; Satoh N
    Mol Biol Evol; 2013 Jan; 30(1):167-76. PubMed ID: 22936719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification and evolution of P-loop GTPases and related ATPases.
    Leipe DD; Wolf YI; Koonin EV; Aravind L
    J Mol Biol; 2002 Mar; 317(1):41-72. PubMed ID: 11916378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Distinct Motif in a Prokaryotic Small Ras-Like GTPase Highlights Unifying Features of Walker B Motifs in P-Loop NTPases.
    Kanade M; Chakraborty S; Shelke SS; Gayathri P
    J Mol Biol; 2020 Sep; 432(20):5544-5564. PubMed ID: 32750390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of eukaryotic apoptosis: the bacterial connection.
    Koonin EV; Aravind L
    Cell Death Differ; 2002 Apr; 9(4):394-404. PubMed ID: 11965492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins.
    MacDonald JA; Wijekoon CP; Liao KC; Muruve DA
    IUBMB Life; 2013 Oct; 65(10):851-62. PubMed ID: 24078393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary history and higher order classification of AAA+ ATPases.
    Iyer LM; Leipe DD; Koonin EV; Aravind L
    J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary relationships of vertebrate NACHT domain-containing proteins.
    Hughes AL
    Immunogenetics; 2006 Oct; 58(10):785-91. PubMed ID: 17006665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis.
    Mekhedov SL; Makarova KS; Koonin EV
    Biol Direct; 2017 May; 12(1):13. PubMed ID: 28545555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification.
    Planet PJ; Kachlany SC; DeSalle R; Figurski DH
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2503-8. PubMed ID: 11226268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants.
    Liu PL; Du L; Huang Y; Gao SM; Yu M
    BMC Evol Biol; 2017 Feb; 17(1):47. PubMed ID: 28173747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NACHT family - a new group of predicted NTPases implicated in apoptosis and MHC transcription activation.
    Koonin EV; Aravind L
    Trends Biochem Sci; 2000 May; 25(5):223-4. PubMed ID: 10782090
    [No Abstract]   [Full Text] [Related]  

  • 18. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2002 Jan; 19(1):24-38. PubMed ID: 11752187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses.
    Damiano JS; Oliveira V; Welsh K; Reed JC
    Biochem J; 2004 Jul; 381(Pt 1):213-9. PubMed ID: 15107016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs.
    Pan X; Peng FY; Weselake RJ
    Plant Physiol; 2015 Mar; 167(3):887-904. PubMed ID: 25585619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.