These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26930673)

  • 1. Toward a Portable Cancer Diagnostic Tool Using a Disposable MEMS-Based Biochip.
    Pandya HJ; Park K; Chen W; Goodell LA; Foran DJ; Desai JP
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1347-53. PubMed ID: 26930673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical Coupling Factor of Breast Tissue as a Biomarker for Breast Cancer.
    Park K; Chen W; Chekmareva MA; Foran DJ; Desai JP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):96-103. PubMed ID: 28436838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis.
    Pandya HJ; Park K; Desai JP
    J Micromech Microeng; 2015 Jun; 25(7):. PubMed ID: 26526747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissues.
    Pandya HJ; Chen W; Goodell LA; Foran DJ; Desai JP
    Lab Chip; 2014 Dec; 14(23):4523-32. PubMed ID: 25267099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers.
    Pandya HJ; Roy R; Chen W; Chekmareva MA; Foran DJ; Desai JP
    Biosens Bioelectron; 2015 Jan; 63():414-424. PubMed ID: 25128621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-patterning of mammalian cells on suspended MEMS resonant sensors for long-term growth measurements.
    Corbin EA; Dorvel BR; Millet LJ; King WP; Bashir R
    Lab Chip; 2014 Apr; 14(8):1401-4. PubMed ID: 24535001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and test of a MEMS strain-sensing device for monitoring artificial knee implants.
    Hasenkamp W; Thevenaz N; Villard J; Bertsch A; Arami A; Aminian K; Terrier A; Renaud P
    Biomed Microdevices; 2013 Oct; 15(5):831-9. PubMed ID: 23660840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous MEMS-based electro-mechanical phenotyping of breast cancer.
    Pandya HJ; Park K; Chen W; Chekmareva MA; Foran DJ; Desai JP
    Lab Chip; 2015; 15(18):3695-706. PubMed ID: 26224116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of ferro-nanofluid on a micro-transformer.
    Tsai TH; Kuo LS; Chen PH; Lee DS; Yang CT
    Sensors (Basel); 2010; 10(9):8161-72. PubMed ID: 22163647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel designs for application specific MEMS pressure sensors.
    Fragiacomo G; Reck K; Lorenzen L; Thomsen EV
    Sensors (Basel); 2010; 10(11):9541-63. PubMed ID: 22163425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEMS: Enabled Drug Delivery Systems.
    Cobo A; Sheybani R; Meng E
    Adv Healthc Mater; 2015 May; 4(7):969-82. PubMed ID: 25703045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a Portable Platform Integrated With Multispectral Noncontact Probes for Delineating Normal and Breast Cancer Tissue Based on Near-Infrared Spectroscopy.
    Pal UM; Gk AV; Gogoi G; Rila S; Shroff S; Am G; Borah P; Varma M; Kurpad V; Baruah D; Vaidya JS; Pandya HJ
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):879-888. PubMed ID: 32746350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel MEMS stiffness sensor for in-vivo tissue characterization measurement.
    Peng P; Sezen AS; Rajamani R; Erdman AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6640-3. PubMed ID: 19963926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-optic measurements and their inter-dependencies for delineating cancerous breast biopsy tissue from adjacent normal.
    Pal UM; Vishnu Gk A; Varma M; Vaidya JS; Pandya HJ
    J Biophotonics; 2021 Aug; 14(8):e202100041. PubMed ID: 34042303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free multimodal electro-thermo-mechanical (ETM) phenotyping as a novel biomarker to differentiate between normal, benign, and cancerous breast biopsy tissues.
    G K AV; Gogoi G; Kachappilly MC; Rangarajan A; Pandya HJ
    J Biol Eng; 2023 Nov; 17(1):68. PubMed ID: 37957665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor.
    Hasenkamp W; Forchelet D; Pataky K; Villard J; Van Lintel H; Bertsch A; Wang Q; Renaud P
    Biomed Microdevices; 2012 Oct; 14(5):819-28. PubMed ID: 22639233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Microscale Flight: Fabrication, Stability Analysis, and Initial Flight Experiments for 300 μm × 300 μm × 1.5 μm Sized Untethered MEMS Microfliers.
    Ward S; Foroutan V; Majumdar R; Mahdavipour O; Hussain SA; Paprotny I
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):323-31. PubMed ID: 25955992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.
    Ayela C; Dubourg G; Pellet C; Haupt K
    Adv Mater; 2014 Sep; 26(33):5876-9. PubMed ID: 25043140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time thickness measurement of biological tissues using a microfabricated magnetically-driven lens actuator.
    Mansoor H; Zeng H; Chiao M
    Biomed Microdevices; 2011 Aug; 13(4):641-9. PubMed ID: 21468630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.