These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26931170)

  • 1. Transporters involved in mineral nutrient uptake in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2016 Jun; 67(12):3645-53. PubMed ID: 26931170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered Root Structure Affects Both Expression and Cellular Localization of Transporters for Mineral Element Uptake in Rice.
    Yu E; Yamaji N; Ma JF
    Plant Cell Physiol; 2020 Mar; 61(3):481-491. PubMed ID: 31747007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OsCASP1 Is Required for Casparian Strip Formation at Endodermal Cells of Rice Roots for Selective Uptake of Mineral Elements.
    Wang Z; Yamaji N; Huang S; Zhang X; Shi M; Fu S; Yang G; Ma JF; Xia J
    Plant Cell; 2019 Nov; 31(11):2636-2648. PubMed ID: 31484684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Type-Dependent but CME-Independent Polar Localization of Silicon Transporters in Rice.
    Konishi N; Huang S; Yamaji N; Ma JF
    Plant Cell Physiol; 2022 May; 63(5):699-712. PubMed ID: 35277719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ZIP Transporter Family Member OsZIP9 Contributes To Root Zinc Uptake in Rice under Zinc-Limited Conditions.
    Huang S; Sasaki A; Yamaji N; Okada H; Mitani-Ueno N; Ma JF
    Plant Physiol; 2020 Jul; 183(3):1224-1234. PubMed ID: 32371522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots.
    Sakurai G; Satake A; Yamaji N; Mitani-Ueno N; Yokozawa M; Feugier FG; Ma JF
    Plant Cell Physiol; 2015 Apr; 56(4):631-9. PubMed ID: 25673476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pericycle-localized silicon transporter for efficient xylem loading in rice.
    Huang S; Yamaji N; Sakurai G; Mitani-Ueno N; Konishi N; Ma JF
    New Phytol; 2022 Apr; 234(1):197-208. PubMed ID: 35020209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functions and transport of silicon in plants.
    Ma JF; Yamaji N
    Cell Mol Life Sci; 2008 Oct; 65(19):3049-57. PubMed ID: 18560761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway.
    Huang S; Konishi N; Yamaji N; Shao JF; Mitani-Ueno N; Ma JF
    Plant Physiol; 2022 Mar; 188(3):1649-1664. PubMed ID: 34893892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A citrate efflux transporter important for manganese distribution and phosphorus uptake in rice.
    Panchal P; Bhatia C; Chen Y; Sharma M; Bhadouria J; Verma L; Maurya K; Miller AJ; Giri J
    Plant J; 2023 Dec; 116(6):1748-1765. PubMed ID: 37715733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice.
    Mitani-Ueno N; Yamaji N; Ma JF
    Plant Cell Physiol; 2016 Dec; 57(12):2510-2518. PubMed ID: 27742884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efflux transporter of silicon in rice.
    Ma JF; Yamaji N; Mitani N; Tamai K; Konishi S; Fujiwara T; Katsuhara M; Yano M
    Nature; 2007 Jul; 448(7150):209-12. PubMed ID: 17625566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cesium Uptake by Rice Roots Largely Depends Upon a Single Gene, HAK1, Which Encodes a Potassium Transporter.
    Rai H; Yokoyama S; Satoh-Nagasawa N; Furukawa J; Nomi T; Ito Y; Fujimura S; Takahashi H; Suzuki R; Yousra E; Goto A; Fuji S; Nakamura SI; Shinano T; Nagasawa N; Wabiko H; Hattori H
    Plant Cell Physiol; 2017 Sep; 58(9):1486-1493. PubMed ID: 28922748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing nutrient transporters to enhance disease resistance in rice.
    Hui S; Zhang P; Yuan M
    J Exp Bot; 2024 May; 75(10):2799-2808. PubMed ID: 38437153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and flexible uptake system for mineral elements in plants.
    Che J; Yamaji N; Ma JF
    New Phytol; 2018 Jul; 219(2):513-517. PubMed ID: 29633285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of silicon from roots to panicles in plants.
    Ma JF; Yamaji N; Mitani-Ueno N
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(7):377-85. PubMed ID: 21785256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity.
    Aibara I; Miwa K
    Plant Cell Physiol; 2014 Dec; 55(12):2027-36. PubMed ID: 25378690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intracellular transport of transporters: membrane trafficking of mineral transporters.
    Fuji K; Miwa K; Fujiwara T
    Curr Opin Plant Biol; 2009 Dec; 12(6):699-704. PubMed ID: 19836293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioimaging of multiple elements by high-resolution LA-ICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants.
    Yamaji N; Ma JF
    Plant J; 2019 Sep; 99(6):1254-1263. PubMed ID: 31108003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polarly localized transporter for efficient manganese uptake in rice.
    Ueno D; Sasaki A; Yamaji N; Miyaji T; Fujii Y; Takemoto Y; Moriyama S; Che J; Moriyama Y; Iwasaki K; Ma JF
    Nat Plants; 2015 Nov; 1():15170. PubMed ID: 27251715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.