These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26931170)

  • 21. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice.
    Ma JF; Yamaji N; Tamai K; Mitani N
    Plant Physiol; 2007 Nov; 145(3):919-24. PubMed ID: 17905867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus.
    Sun H; Guo J; Duan Y; Zhang T; Huo H; Gong H
    Physiol Plant; 2017 Feb; 159(2):201-214. PubMed ID: 27701737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
    Ranathunge K; Steudle E; Lafitte R
    Planta; 2003 Jun; 217(2):193-205. PubMed ID: 12783327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis.
    Wang Z; Zhang B; Chen Z; Wu M; Chao D; Wei Q; Xin Y; Li L; Ming Z; Xia J
    Plant Cell; 2022 Jul; 34(8):2948-2968. PubMed ID: 35543496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A transporter at the node responsible for intervascular transfer of silicon in rice.
    Yamaji N; Ma JF
    Plant Cell; 2009 Sep; 21(9):2878-83. PubMed ID: 19734433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice.
    Sasaki A; Yamaji N; Yokosho K; Ma JF
    Plant Cell; 2012 May; 24(5):2155-67. PubMed ID: 22589467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological and molecular characterization of Si uptake in wild rice species.
    Mitani-Ueno N; Ogai H; Yamaji N; Ma JF
    Physiol Plant; 2014 Jul; 151(3):200-7. PubMed ID: 24320720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter.
    Sun H; Duan Y; Mitani-Ueno N; Che J; Jia J; Liu J; Guo J; Ma JF; Gong H
    Plant Cell Environ; 2020 Mar; 43(3):732-744. PubMed ID: 31724184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake.
    Mitani-Ueno N; Yamaji N; Ma JF
    Plant Signal Behav; 2011 Jul; 6(7):991-4. PubMed ID: 21617377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant Nutrition for Human Nutrition: Hints from Rice Research and Future Perspectives.
    Huang S; Wang P; Yamaji N; Ma JF
    Mol Plant; 2020 Jun; 13(6):825-835. PubMed ID: 32434072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition.
    Konishi N; Ma JF
    New Phytol; 2021 Nov; 232(4):1778-1792. PubMed ID: 34392543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice.
    Yamaji N; Sakurai G; Mitani-Ueno N; Ma JF
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11401-6. PubMed ID: 26283388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silicon reduces the iron uptake in rice and induces iron homeostasis related genes.
    Becker M; Ngo NS; Schenk MKA
    Sci Rep; 2020 Mar; 10(1):5079. PubMed ID: 32193423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A silicon transporter in rice.
    Ma JF; Tamai K; Yamaji N; Mitani N; Konishi S; Katsuhara M; Ishiguro M; Murata Y; Yano M
    Nature; 2006 Mar; 440(7084):688-91. PubMed ID: 16572174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions.
    Takehisa H; Sato Y; Igarashi M; Abiko T; Antonio BA; Kamatsuki K; Minami H; Namiki N; Inukai Y; Nakazono M; Nagamura Y
    Plant J; 2012 Jan; 69(1):126-40. PubMed ID: 21895812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OsCASP1 forms complexes with itself and OsCASP2 in rice.
    Wang Z; Shi M; Wei Q; Chen Z; Huang J; Xia J
    Plant Signal Behav; 2020; 15(1):1706025. PubMed ID: 31851568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice.
    Ma JF; Mitani N; Nagao S; Konishi S; Tamai K; Iwashita T; Yano M
    Plant Physiol; 2004 Oct; 136(2):3284-9. PubMed ID: 15448199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings.
    Zhou Q; Wang L; Cai X; Wang D; Hua X; Qu L; Lin J; Chen T
    J Plant Physiol; 2011 Jul; 168(11):1249-55. PubMed ID: 21353327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice.
    Ye Y; Yuan J; Chang X; Yang M; Zhang L; Lu K; Lian X
    PLoS One; 2015; 10(5):e0126186. PubMed ID: 25970642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice.
    Wang L; Guo M; Li Y; Ruan W; Mo X; Wu Z; Sturrock CJ; Yu H; Lu C; Peng J; Mao C
    J Exp Bot; 2018 Jan; 69(3):385-397. PubMed ID: 29294052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.