These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26931171)

  • 1. Root phenology in a changing climate.
    Radville L; McCormack ML; Post E; Eissenstat DM
    J Exp Bot; 2016 Jun; 67(12):3617-28. PubMed ID: 26931171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited linkages of aboveground and belowground phenology: A study in grape.
    Radville L; Bauerle TL; Comas LH; Marchetto KA; Lakso AN; Smart DR; Dunst RM; Eissenstat DM
    Am J Bot; 2016 Nov; 103(11):1897-1911. PubMed ID: 27879261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking belowground and aboveground phenology in two boreal forests in Northeast China.
    Du E; Fang J
    Oecologia; 2014 Nov; 176(3):883-92. PubMed ID: 25164492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are above- and below-ground phenology in sync?
    Abramoff RZ; Finzi AC
    New Phytol; 2015 Feb; 205(3):1054-61. PubMed ID: 25729805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes.
    Mäkiranta P; Laiho R; Mehtätalo L; Straková P; Sormunen J; Minkkinen K; Penttilä T; Fritze H; Tuittila ES
    Glob Chang Biol; 2018 Mar; 24(3):944-956. PubMed ID: 28994163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in root production, phenology, and turnover rate among 12 temperate tree species.
    McCormack ML; Adams TS; Smithwick EA; Eissenstat DM
    Ecology; 2014 Aug; 95(8):2224-35. PubMed ID: 25230473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.
    Cowles JM; Wragg PD; Wright AJ; Powers JS; Tilman D
    Glob Chang Biol; 2016 Feb; 22(2):741-9. PubMed ID: 26426698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau.
    Wang G; Baskin CC; Baskin JM; Yang X; Liu G; Ye X; Zhang X; Huang Z
    Am J Bot; 2018 Jun; 105(6):967-976. PubMed ID: 29927486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waterlogging and soil freezing during dormancy affected root and shoot phenology and growth of Scots pine saplings.
    Roitto M; Sutinen S; Wang AF; Domisch T; Lehto T; Repo T
    Tree Physiol; 2019 May; 39(5):805-818. PubMed ID: 30753688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient.
    Blume-Werry G; Wilson SD; Kreyling J; Milbau A
    New Phytol; 2016 Feb; 209(3):978-86. PubMed ID: 26390239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.
    Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R
    Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant developmental responses to climate change.
    Gray SB; Brady SM
    Dev Biol; 2016 Nov; 419(1):64-77. PubMed ID: 27521050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.
    Xie Y; Wang X; Silander JA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13585-90. PubMed ID: 26483475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.
    Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T
    Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root standing crop and chemistry after six years of soil warming in a temperate forest.
    Zhou Y; Tang J; Melillo JM; Butler S; Mohan JE
    Tree Physiol; 2011 Jul; 31(7):707-17. PubMed ID: 21813516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic.
    Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J
    Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the grass always greener? Land surface phenology reveals differences in peak and season-long vegetation productivity responses to climate and management.
    Wood DJA; Powell S; Stoy PC; Thurman LL; Beever EA
    Ecol Evol; 2021 Aug; 11(16):11168-11199. PubMed ID: 34429910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.