These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26931353)

  • 1. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides.
    Liu Z; Zhang L; Wang R; Poyraz S; Cook J; Bozack MJ; Das S; Zhang X; Hu L
    Sci Rep; 2016 Mar; 6():22503. PubMed ID: 26931353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices.
    Gao MR; Xu YF; Jiang J; Yu SH
    Chem Soc Rev; 2013 Apr; 42(7):2986-3017. PubMed ID: 23296312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Microwave Welding/Reinforcing Approach at the Interface of Thermoplastic Materials.
    Poyraz S; Zhang L; Schroder A; Zhang X
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22469-77. PubMed ID: 26372303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions.
    Zhao W; Zhang C; Geng F; Zhuo S; Zhang B
    ACS Nano; 2014 Oct; 8(10):10909-19. PubMed ID: 25283816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating.
    Qiao H; Saray MT; Wang X; Xu S; Chen G; Huang Z; Chen C; Zhong G; Dong Q; Hong M; Xie H; Shahbazian-Yassar R; Hu L
    ACS Nano; 2021 Sep; 15(9):14928-14937. PubMed ID: 34423972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid chalcogenide nanoparticles: 2D-WS2 nanocrystals inside nested WS2 fullerenes.
    Hoshyargar F; Corrales TP; Branscheid R; Kolb U; Kappl M; Panthöfer M; Tremel W
    Dalton Trans; 2013 Oct; 42(40):14568-75. PubMed ID: 23982722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal synthesis of metal chalcogenide nanomaterials from metal-organic precursors and capping ligand effect on electrocatalytic performance: progress, challenges and future perspectives.
    Khan MD; Opallo M; Revaprasadu N
    Dalton Trans; 2021 Sep; 50(33):11347-11359. PubMed ID: 34369529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-MoS2 Nanostructures: Tl2S and Its Electrochemical and Electronic Properties.
    Chia X; Ambrosi A; Sofer Z; Luxa J; Sedmidubský D; Pumera M
    ACS Nano; 2016 Jan; 10(1):112-23. PubMed ID: 26623660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential controlled electrochemical conversion of AgCN and Cu(OH)2 nanofibers into metal nanoparticles, nanoprisms, nanofibers, and porous networks.
    Bourret GR; Lennox RB
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3745-58. PubMed ID: 21121642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exfoliation of large-area transition metal chalcogenide single layers.
    Magda GZ; Pető J; Dobrik G; Hwang C; Biró LP; Tapasztó L
    Sci Rep; 2015 Oct; 5():14714. PubMed ID: 26443185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted green synthesis of silver nanostructures.
    Nadagouda MN; Speth TF; Varma RS
    Acc Chem Res; 2011 Jul; 44(7):469-78. PubMed ID: 21526846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating.
    Lin Y; Baggett DW; Kim JW; Siochi EJ; Connell JW
    ACS Appl Mater Interfaces; 2011 May; 3(5):1652-64. PubMed ID: 21517032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application.
    Lee JS; Jun J; Shin DH; Jang J
    Nanoscale; 2014 Apr; 6(8):4188-94. PubMed ID: 24609508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.
    Lee JS; Shin DH; Jun J; Lee C; Jang J
    ChemSusChem; 2014 Jun; 7(6):1676-83. PubMed ID: 24706636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general strategy for the functionalization of two-dimensional metal chalcogenides.
    Shen J; Wang H; Zhuang P; Zeng H; Ge Y; Steven C; Dong P; Gao SP; Ye M
    Nanoscale; 2018 Jun; 10(22):10657-10663. PubMed ID: 29845134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers.
    McFarlane IR; Lazzari-Dean JR; El-Naggar MY
    Acta Biomater; 2015 Feb; 13():364-73. PubMed ID: 25462841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.