These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26931444)
1. Ab initio study of the influence of resonance stabilization on intramolecular ring closure reactions of hydrocarbon radicals. Wang K; Villano SM; Dean AM Phys Chem Chem Phys; 2016 Mar; 18(12):8437-52. PubMed ID: 26931444 [TBL] [Abstract][Full Text] [Related]
2. The impact of resonance stabilization on the intramolecular hydrogen-atom shift reactions of hydrocarbon radicals. Wang K; Villano SM; Dean AM Chemphyschem; 2015 Aug; 16(12):2635-45. PubMed ID: 26212671 [TBL] [Abstract][Full Text] [Related]
3. Reactivity-Structure-Based Rate Estimation Rules for Alkyl Radical H Atom Shift and Alkenyl Radical Cycloaddition Reactions. Wang K; Villano SM; Dean AM J Phys Chem A; 2015 Jul; 119(28):7205-21. PubMed ID: 25563061 [TBL] [Abstract][Full Text] [Related]
4. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry. Auzmendi-Murua I; Bozzelli JW J Phys Chem A; 2014 May; 118(17):3147-67. PubMed ID: 24660891 [TBL] [Abstract][Full Text] [Related]
5. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals. Zhu L; Bozzelli JW; Kardos LM J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739 [TBL] [Abstract][Full Text] [Related]
6. Pressure-Dependent Rate Rules for Intramolecular H-Migration Reactions of Hydroperoxyalkylperoxy Radicals in Low Temperature. Yao Q; Sun XH; Li ZR; Chen FF; Li XY J Phys Chem A; 2017 Apr; 121(16):3001-3018. PubMed ID: 28383903 [TBL] [Abstract][Full Text] [Related]
7. High-pressure rate rules for alkyl + O2 reactions. 2. The isomerization, cyclic ether formation, and β-scission reactions of hydroperoxy alkyl radicals. Villano SM; Huynh LK; Carstensen HH; Dean AM J Phys Chem A; 2012 May; 116(21):5068-89. PubMed ID: 22548467 [TBL] [Abstract][Full Text] [Related]
8. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide. Asatryan R; Bozzelli JW Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182 [TBL] [Abstract][Full Text] [Related]
9. Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. Sirjean B; Glaude PA; Ruiz-Lopèz MF; Fournet R J Phys Chem A; 2008 Nov; 112(46):11598-610. PubMed ID: 18956855 [TBL] [Abstract][Full Text] [Related]
10. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction. da Silva G; Chen CC; Bozzelli JW J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501 [TBL] [Abstract][Full Text] [Related]
11. Chain branching and termination in the low-temperature combustion of n-alkanes: 2-pentyl radical + O2, isomerization and association of the second O2. Asatryan R; Bozzelli JW J Phys Chem A; 2010 Jul; 114(29):7693-708. PubMed ID: 20604539 [TBL] [Abstract][Full Text] [Related]
12. Ab initio study of chain branching reactions involving second generation products in hydrocarbon combustion mechanisms. Davis AC; Francisco JS Phys Chem Chem Phys; 2012 Jan; 14(4):1343-51. PubMed ID: 22048707 [TBL] [Abstract][Full Text] [Related]
13. Pressure-dependent rate rules for cycloaddition, intramolecular H-shift, and concerted elimination reactions of alkenyl peroxy radicals at low temperature. Sun X; Zong W; Wang J; Li Z; Li X Phys Chem Chem Phys; 2019 May; 21(20):10693-10705. PubMed ID: 31086861 [TBL] [Abstract][Full Text] [Related]
14. Reactions of allylic radicals that impact molecular weight growth kinetics. Wang K; Villano SM; Dean AM Phys Chem Chem Phys; 2015 Mar; 17(9):6255-73. PubMed ID: 25648200 [TBL] [Abstract][Full Text] [Related]
15. Ab initio group contribution method for activation energies of hydrogen abstraction reactions. Saeys M; Reyniers MF; Van Speybroeck V; Waroquier M; Marin GB Chemphyschem; 2006 Jan; 7(1):188-99. PubMed ID: 16323223 [TBL] [Abstract][Full Text] [Related]
16. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by carbon-centered radicals. Paraskevas PD; Sabbe MK; Reyniers MF; Papayannakos N; Marin GB Chemphyschem; 2014 Jun; 15(9):1849-66. PubMed ID: 24829125 [TBL] [Abstract][Full Text] [Related]
17. Kinetic barriers of H-atom transfer reactions in alkyl, allylic, and oxoallylic radicals as calculated by composite ab initio methods. Hayes CJ; Burgess DR J Phys Chem A; 2009 Mar; 113(11):2473-82. PubMed ID: 19281146 [TBL] [Abstract][Full Text] [Related]
18. Intramolecular effects on the kinetics of unimolecular reactions of β-HOROO˙ and HOQ˙OOH radicals. Lizardo-Huerta JC; Sirjean B; Bounaceur R; Fournet R Phys Chem Chem Phys; 2016 Apr; 18(17):12231-51. PubMed ID: 27080359 [TBL] [Abstract][Full Text] [Related]
19. Carbon-centered radical addition and beta-scission reactions: modeling of activation energies and pre-exponential factors. Sabbe MK; Reyniers MF; Van Speybroeck V; Waroquier M; Marin GB Chemphyschem; 2008 Jan; 9(1):124-40. PubMed ID: 18175363 [TBL] [Abstract][Full Text] [Related]
20. Thermochemical and kinetic analyses on oxidation of isobutenyl radical and 2-hydroperoxymethyl-2-propenyl radical. Zheng XL; Sun HY; Law CK J Phys Chem A; 2005 Oct; 109(40):9044-53. PubMed ID: 16332010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]