These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 26931632)
21. Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. Jiang H; Xia A; Ye M; Ren J; Li D; Liu H; Wang Q; Lu P; Wu C; Xu JR; Jiang C PLoS Genet; 2020 Nov; 16(11):e1009185. PubMed ID: 33137093 [TBL] [Abstract][Full Text] [Related]
22. The SR-protein FgSrp2 regulates vegetative growth, sexual reproduction and pre-mRNA processing by interacting with FgSrp1 in Fusarium graminearum. Zhang Y; Dai Y; Huang Y; Wang K; Lu P; Xu H; Xu JR; Liu H Curr Genet; 2020 Jun; 66(3):607-619. PubMed ID: 32040734 [TBL] [Abstract][Full Text] [Related]
23. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Zhang Y; Gao X; Sun M; Liu H; Xu JR Environ Microbiol; 2017 Oct; 19(10):4065-4079. PubMed ID: 28654215 [TBL] [Abstract][Full Text] [Related]
24. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
25. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
26. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Brauer EK; Manes N; Bonner C; Subramaniam R Fungal Genet Biol; 2020 Jan; 134():103277. PubMed ID: 31605748 [TBL] [Abstract][Full Text] [Related]
27. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Yang C; Liu H; Li G; Liu M; Yun Y; Wang C; Ma Z; Xu JR Environ Microbiol; 2015 Aug; 17(8):2762-76. PubMed ID: 25627073 [TBL] [Abstract][Full Text] [Related]
28. Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum. Ding M; Zhu Q; Liang Y; Li J; Fan X; Yu X; He F; Xu H; Liang Y; Yu J Fungal Genet Biol; 2017 Dec; 109():46-52. PubMed ID: 29079075 [TBL] [Abstract][Full Text] [Related]
29. Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum. Wang G; Sun P; Gong Z; Gu L; Lou Y; Fang W; Zhang L; Su L; Yang T; Wang B; Zhou J; Xu JR; Wang Z; Zheng W Environ Microbiol; 2018 Sep; 20(9):3261-3277. PubMed ID: 30051568 [TBL] [Abstract][Full Text] [Related]
30. The transcription factor FgMed1 is involved in early conidiogenesis and DON biosynthesis in the plant pathogenic fungus Fusarium graminearum. Fan G; Zhang K; Zhang J; Yang J; Yang X; Hu Y; Huang J; Zhu Y; Yu W; Hu H; Wang B; Shim W; Lu GD Appl Microbiol Biotechnol; 2019 Jul; 103(14):5851-5865. PubMed ID: 31115634 [TBL] [Abstract][Full Text] [Related]
31. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Li C; Melesse M; Zhang S; Hao C; Wang C; Zhang H; Hall MC; Xu JR Mol Microbiol; 2015 Nov; 98(4):770-86. PubMed ID: 26256689 [TBL] [Abstract][Full Text] [Related]
32. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. Jiang J; Liu X; Yin Y; Ma Z PLoS One; 2011; 6(11):e28291. PubMed ID: 22140571 [TBL] [Abstract][Full Text] [Related]
33. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. Kim Y; Kim H; Son H; Choi GJ; Kim JC; Lee YW PLoS One; 2014; 9(4):e94359. PubMed ID: 24722578 [TBL] [Abstract][Full Text] [Related]
34. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
35. Functional characterization of Rho family small GTPases in Fusarium graminearum. Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721 [TBL] [Abstract][Full Text] [Related]
36. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Merhej J; Urban M; Dufresne M; Hammond-Kosack KE; Richard-Forget F; Barreau C Mol Plant Pathol; 2012 May; 13(4):363-74. PubMed ID: 22013911 [TBL] [Abstract][Full Text] [Related]
37. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. Wang C; Zhang S; Hou R; Zhao Z; Zheng Q; Xu Q; Zheng D; Wang G; Liu H; Gao X; Ma JW; Kistler HC; Kang Z; Xu JR PLoS Pathog; 2011 Dec; 7(12):e1002460. PubMed ID: 22216007 [TBL] [Abstract][Full Text] [Related]
38. Advances in Understanding Niu G; Yang Q; Liao Y; Sun D; Tang Z; Wang G; Xu M; Wang C; Kang J Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674409 [TBL] [Abstract][Full Text] [Related]
39. The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. Zheng Q; Hou R; Juanyu ; Zhang ; Ma J; Wu Z; Wang G; Wang C; Xu JR PLoS One; 2013; 8(6):e66980. PubMed ID: 23826182 [TBL] [Abstract][Full Text] [Related]
40. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Jiang C; Zhang S; Zhang Q; Tao Y; Wang C; Xu JR Environ Microbiol; 2015 Apr; 17(4):1245-60. PubMed ID: 25040476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]