BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26931664)

  • 1. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).
    Miao L; Wang C; Hou J; Wang P; Ao Y; Li Y; Lv B; Yang Y; You G; Xu Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11611-9. PubMed ID: 26931664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations.
    Chen KL; Mylon SE; Elimelech M
    Langmuir; 2007 May; 23(11):5920-8. PubMed ID: 17469860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.
    Chen KL; Mylon SE; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(5):1516-23. PubMed ID: 16568765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.
    Loosli F; Le Coustumer P; Stoll S
    Sci Total Environ; 2015 Dec; 535():28-34. PubMed ID: 25726181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing.
    Buk V; Emregul E; Emregul KC
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():307-314. PubMed ID: 28254299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Ionic and Nonionic Surfactants on the Colloidal Stability and Removal of CuO Nanoparticles from Water by Chemical Coagulation.
    Khan R; Inam MA; Khan S; Jiménez AN; Park DR; Yeom IT
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.
    Zhao J; Liu Y; Pan B; Gao G; Liu Y; Liu S; Liang N; Zhou D; Vijver MG; Peijnenburg WJGM
    Water Res; 2017 Dec; 127():59-67. PubMed ID: 29031800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules.
    Huangfu X; Jiang J; Ma J; Liu Y; Yang J
    Environ Sci Technol; 2013 Sep; 47(18):10285-92. PubMed ID: 23947796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence.
    Xiao Y; Tang W; Peijnenburg WJGM; Zhang X; Wu J; Xu M; Xiao H; He Y; Luo L; Yang G; Chen C; Tu L
    J Environ Manage; 2022 May; 310():114770. PubMed ID: 35202947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Removal of CuO Nanoparticles from Water by Conventional Treatment C/F/S: The Effect of pH and Natural Organic Matter.
    Khan R; Inam MA; Park DR; Khan S; Akram M; Yeom IT
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase.
    Rabbani G; Khan MJ; Ahmad A; Maskat MY; Khan RH
    Colloids Surf B Biointerfaces; 2014 Nov; 123():96-105. PubMed ID: 25260221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and preparation of stable cross-linked alginate-zinc nanoparticles in the presence of a monovalent salt.
    Pistone S; Qoragllu D; Smistad G; Hiorth M
    Soft Matter; 2015 Jul; 11(28):5765-74. PubMed ID: 26086433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aggregation behavior of hydrophobic sodium alginate derivatives in aqueous solution and their application in the nanoencapsulation of acetamiprid.
    Zhao X; Li J; Feng Y; Yu G; Zhou Q; He F; Xiao D; Chen K; Zhang L
    Int J Biol Macromol; 2018 Jan; 106():418-424. PubMed ID: 28803972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium.
    Bar-Shir A; Avram L; Yariv-Shoushan S; Anaby D; Cohen S; Segev-Amzaleg N; Frenkel D; Sadan O; Offen D; Cohen Y
    NMR Biomed; 2014 Jul; 27(7):774-83. PubMed ID: 24764262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.
    Chen KL; Elimelech M
    Environ Sci Technol; 2008 Oct; 42(20):7607-14. PubMed ID: 18983082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elucidation of surrounding alginate gels on the pollutants degradation by entrapped nanoscale zero-valent iron.
    Yi K; Fan Z; Tang J; Chen A; Shao J; Peng L; Zeng Q; Luo S
    Colloids Surf B Biointerfaces; 2018 Nov; 171():233-240. PubMed ID: 30036790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing colon-specific delivery systems for anticancer drug-loaded nanoparticles: an evaluation of alginate carriers.
    Ma Y; Coombes AG
    J Biomed Mater Res A; 2014 Sep; 102(9):3167-76. PubMed ID: 24124007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion.
    Liu S; Liu Y; Pan B; He Y; Li B; Zhou D; Xiao Y; Qiu H; Vijver MG; Peijnenburg WJGM
    Chemosphere; 2020 Apr; 245():125612. PubMed ID: 31864948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate.
    Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E
    Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.