These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26931707)

  • 1. Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature.
    Piñeros WD; Baldea M; Truskett TM
    J Chem Phys; 2016 Feb; 144(8):084502. PubMed ID: 26931707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices.
    Piñeros WD; Baldea M; Truskett TM
    J Chem Phys; 2016 Aug; 145(5):054901. PubMed ID: 27497576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual ground states via monotonic convex pair potentials.
    Marcotte É; Stillinger FH; Torquato S
    J Chem Phys; 2011 Apr; 134(16):164105. PubMed ID: 21528948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.
    Zhang G; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042309. PubMed ID: 24229174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices.
    Piñeros WD; Truskett TM
    J Chem Phys; 2017 Apr; 146(14):144501. PubMed ID: 28411598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Designed diamond ground state via optimized isotropic monotonic pair potentials.
    Marcotte É; Stillinger FH; Torquato S
    J Chem Phys; 2013 Feb; 138(6):061101. PubMed ID: 23425451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed interaction potentials via inverse methods for self-assembly.
    Rechtsman M; Stillinger F; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011406. PubMed ID: 16486139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions and design rules for assembly of porous colloidal mesophases.
    Lindquist BA; Dutta S; Jadrich RB; Milliron DJ; Truskett TM
    Soft Matter; 2017 Feb; 13(7):1335-1343. PubMed ID: 28133680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of the simple cubic lattice with an isotropic potential.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021404. PubMed ID: 17025422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: Phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states.
    Jain A; Errington JR; Truskett TM
    J Chem Phys; 2013 Oct; 139(14):141102. PubMed ID: 24116595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, dynamics, and thermodynamics of a family of potentials with tunable softness.
    Shi Z; Debenedetti PG; Stillinger FH; Ginart P
    J Chem Phys; 2011 Aug; 135(8):084513. PubMed ID: 21895205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031403. PubMed ID: 17500697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Devil's Staircase without Particle-Hole Symmetry in Rydberg Quantum Gases with Competing Attractive and Repulsive Interactions.
    Lan Z; Minář J; Levi E; Li W; Lesanovsky I
    Phys Rev Lett; 2015 Nov; 115(20):203001. PubMed ID: 26613435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium cluster fluids: pair interactions via inverse design.
    Jadrich RB; Bollinger JA; Lindquist BA; Truskett TM
    Soft Matter; 2015 Dec; 11(48):9342-54. PubMed ID: 26434352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized interactions for targeted self-assembly: application to a honeycomb lattice.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev Lett; 2005 Nov; 95(22):228301. PubMed ID: 16384268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pair and many-body interactions between ligated Au nanoparticles.
    Liepold C; Smith A; Lin B; de Pablo J; Rice SA
    J Chem Phys; 2019 Jan; 150(4):044904. PubMed ID: 30709285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing colloidal ground-state patterns using short-range isotropic interactions.
    Tindemans SH; Mulder BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021404. PubMed ID: 20866806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transitions, melting, and intermediate phases for stripe- and clump-forming systems.
    Olson Reichhardt CJ; Reichhardt C; Bishop AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041502. PubMed ID: 21230277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground-state clusters for short-range attractive and long-range repulsive potentials.
    Mossa S; Sciortino F; Tartaglia P; Zaccarelli E
    Langmuir; 2004 Nov; 20(24):10756-63. PubMed ID: 15544413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation.
    Li Y; Lin ST; Goddard WA
    J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.