These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26931711)

  • 41. Thermal conductivity of solid argon from molecular dynamics simulations.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Feb; 120(8):3765-9. PubMed ID: 15268540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular theory of thermal conductivity of the Lennard-Jones fluid.
    Eskandari Nasrabad A; Laghaei R; Eu BC
    J Chem Phys; 2006 Feb; 124(8):084506. PubMed ID: 16512728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal conductivity of ionic systems from equilibrium molecular dynamics.
    Salanne M; Marrocchelli D; Merlet C; Ohtori N; Madden PA
    J Phys Condens Matter; 2011 Mar; 23(10):102101. PubMed ID: 21335634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical evaluation on heat transport characteristics between Al2O3 and ZnO materials in nanoscale situation.
    Yang P; Xu H; Zhang L; Xie F; Yang J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):158-62. PubMed ID: 22168257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches.
    Jolfaei NA; Jolfaei NA; Hekmatifar M; Piranfar A; Toghraie D; Sabetvand R; Rostami S
    Comput Methods Programs Biomed; 2020 Mar; 185():105169. PubMed ID: 31715331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neutron diffraction data and molecular dynamics simulations of the molten mixture Ag(Br0.7I0.3).
    Bitrián V; Trullàs J; Silbert M; Enosaki T; Kawakita Y; Takeda S
    J Chem Phys; 2006 Nov; 125(18):184510. PubMed ID: 17115768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Origins of the high temperature increase of the thermal conductivity of transition metal carbides from atomistic simulations.
    Crocombette JP
    J Phys Condens Matter; 2013 Dec; 25(50):505501. PubMed ID: 24275525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations.
    Mahajan SS; Subbarayan G; Sammakia BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056701. PubMed ID: 18233784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calculation of the transport properties of carbon dioxide. II. Thermal conductivity and thermomagnetic effects.
    Bock S; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2004 May; 120(17):7987-97. PubMed ID: 15267716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study.
    Tretiakov KV; Scandolo S
    J Chem Phys; 2004 Dec; 121(22):11177-82. PubMed ID: 15634072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diffusion coefficients and local structure in basic molten fluorides: in situ NMR measurements and molecular dynamics simulations.
    Sarou-Kanian V; Rollet AL; Salanne M; Simon C; Bessada C; Madden PA
    Phys Chem Chem Phys; 2009 Dec; 11(48):11501-6. PubMed ID: 20024421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics.
    Rudd RE; Cabot WH; Caspersen KJ; Greenough JA; Richards DF; Streitz FH; Miller PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031202. PubMed ID: 22587084
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon.
    Chen Y; Lukes JR; Li D; Yang J; Wu Y
    J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical studies of structure and dynamics of molten salts: the LiF-ThF4 system.
    Liu JB; Chen X; Qiu YH; Xu CF; Schwarz WH; Li J
    J Phys Chem B; 2014 Dec; 118(48):13954-62. PubMed ID: 25361071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a Polarizable Interatomic Potential for Molten Lithium, Sodium, and Potassium Nitrate.
    Maxwell CI; Saoudi M; Pencer J
    J Phys Chem B; 2020 Jun; 124(23):4751-4761. PubMed ID: 32401516
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molten alkali halides - temperature dependence of structure, dynamics and thermodynamics.
    Walz MM; van der Spoel D
    Phys Chem Chem Phys; 2019 Aug; 21(34):18516-18524. PubMed ID: 31414083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The redox combustion of carbon monoxide for recovering pure carbon dioxide by using molten (Na+,K+)2(CO32-,SO42-) mixtures.
    Shimano S; Asakura S
    Chemosphere; 2006 Jun; 63(10):1641-7. PubMed ID: 16337672
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations.
    Balasubramanian G; Puri IK; Böhm MC; Leroy F
    Nanoscale; 2011 Sep; 3(9):3714-20. PubMed ID: 21792432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.
    Römer F; Wang Z; Wiegand S; Bresme F
    J Phys Chem B; 2013 Jul; 117(27):8209-22. PubMed ID: 23758489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.