These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 26931724)
1. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring. Zhang R; Roberts T; Aranson IS; de Pablo JJ J Chem Phys; 2016 Feb; 144(8):084905. PubMed ID: 26931724 [TBL] [Abstract][Full Text] [Related]
2. The effect of anchoring on the nematic flow in channels. Batista VM; Blow ML; Telo da Gama MM Soft Matter; 2015 Jun; 11(23):4674-85. PubMed ID: 25971631 [TBL] [Abstract][Full Text] [Related]
3. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device. Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748 [TBL] [Abstract][Full Text] [Related]
4. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations. Marenduzzo D; Orlandini E; Cates ME; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031921. PubMed ID: 17930285 [TBL] [Abstract][Full Text] [Related]
5. Orientational instabilities in nematic liquid crystals with weak anchoring under combined action of steady flow and external fields. Nasibullayev ISh; Tarasov OS; Krekhov AP; Kramer L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051706. PubMed ID: 16383619 [TBL] [Abstract][Full Text] [Related]
6. Interplay between shear flow and elastic deformations in liquid crystals. Marenduzzo D; Orlandini E; Yeomans JM J Chem Phys; 2004 Jul; 121(1):582-91. PubMed ID: 15260580 [TBL] [Abstract][Full Text] [Related]
7. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals. Makarov DV; Zakhlevnykh AN Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041710. PubMed ID: 17155081 [TBL] [Abstract][Full Text] [Related]
8. Permeative flows in cholesterics: shear and Poiseuille flows. Marenduzzo D; Orlandini E; Yeomans JM J Chem Phys; 2006 May; 124(20):204906. PubMed ID: 16774383 [TBL] [Abstract][Full Text] [Related]
9. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
11. Pattern-forming instabilities in nematic liquid crystals under oscillatory Couette flow. Tarasov OS; Krekhov AP; Kramer L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031709. PubMed ID: 16241462 [TBL] [Abstract][Full Text] [Related]
12. Shear dynamics of an inverted nematic emulsion. Tiribocchi A; Da Re M; Marenduzzo D; Orlandini E Soft Matter; 2016 Oct; 12(39):8195-8213. PubMed ID: 27714315 [TBL] [Abstract][Full Text] [Related]
14. Lattice Boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics. Denniston C; Marenduzzo D; Orlandini E; Yeomans JM Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1745-54. PubMed ID: 15306444 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic control over topological states in channel-confined nematic flows. Čopar S; Kos Ž; Emeršič T; Tkalec U Nat Commun; 2020 Jan; 11(1):59. PubMed ID: 31896755 [TBL] [Abstract][Full Text] [Related]
16. Electrorheological response and orientational bistability of a homogeneously aligned nematic capillary. Reyes JA; Corella-Madueño A; Mendoza CI J Chem Phys; 2008 Aug; 129(8):084710. PubMed ID: 19044844 [TBL] [Abstract][Full Text] [Related]
17. Flexoelectric instability and a spontaneous chiral-symmetry breaking in a nematic liquid crystal cell with asymmetric boundary conditions. Palto SP; Mottram NJ; Osipov MA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061707. PubMed ID: 17677283 [TBL] [Abstract][Full Text] [Related]
18. Nematic liquid crystals in a spatially step-wise magnetic field. Napoli G; Scaraggi M Phys Rev E; 2016 Jan; 93(1):012701. PubMed ID: 26871129 [TBL] [Abstract][Full Text] [Related]
19. Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions. Sulaiman N; Marenduzzo D; Yeomans JM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041708. PubMed ID: 17155079 [TBL] [Abstract][Full Text] [Related]
20. Direct mapping of local director field of nematic liquid crystals at the nanoscale. Xia Y; Serra F; Kamien RD; Stebe KJ; Yang S Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15291-6. PubMed ID: 26621729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]