These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26931827)

  • 1. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.
    Khan FU; Khattak MU
    Rev Sci Instrum; 2016 Feb; 87(2):021501. PubMed ID: 26931827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.
    Khan FU; Izhar
    Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.
    Khan FU
    ScientificWorldJournal; 2016; 2016():3934289. PubMed ID: 27579343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: a review.
    Khan NU; Khan FU; Farina M; Merla A
    Phys Eng Sci Med; 2024 Jun; 47(2):385-401. PubMed ID: 38231358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy scavenging for long-term deployable wireless sensor networks.
    Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B
    Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Printed Energy Harvesting Technology for Self-Sustainable Autonomous Sensor Application.
    Kim S; Tentzeris MM; Georgiadis A
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30754670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband vibration energy harvesting for wireless sensor node power supply in train container.
    Wang L; Luo G; Jiang Z; Zhang F; Zhao L; Yang P; Lin Q; Maeda R
    Rev Sci Instrum; 2019 Dec; 90(12):125003. PubMed ID: 31893793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic Vibrational Energy Harvesters: A Review.
    Muscat A; Bhattacharya S; Zhu Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters.
    Alameh AH; Gratuze M; Elsayed MY; Nabki F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
    Ait Aoudia F; Gautier M; Magno M; Berder O; Benini L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester.
    Li M; Deng H; Zhang Y; Li K; Huang S; Liu X
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing.
    Yang J; Chen J; Liu Y; Yang W; Su Y; Wang ZL
    ACS Nano; 2014 Mar; 8(3):2649-57. PubMed ID: 24524252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.
    Nabavi S; Zhang L
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27438834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.