These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 26931876)

  • 1. Digital synthetic impedance for application in vibration damping.
    Nečásek J; Václavík J; Marton P
    Rev Sci Instrum; 2016 Feb; 87(2):024704. PubMed ID: 26931876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive vibration suppression system: an iterative control law for a piezoelectric actuator shunted by a negative capacitor.
    Kodejska M; Mokry P; Linhart V; Vaclavik J; Sluka T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2785-96. PubMed ID: 23221228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost, microcontroller-based, two-channel piezoelectric bender device for somatosensory experiments.
    Yan L; Hallum LE
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3897-3900. PubMed ID: 33018852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibroacoustical Performance Analysis of a Rigid Device Casing with Piezoelectric Shunt Damping.
    Mazur K; Rzepecki J; Pietruszewska A; Wrona S; Pawelczyk M
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prototyping a compact system for active vibration isolation using piezoelectric sensors and actuators.
    Shen H; Wang C; Li L; Chen L
    Rev Sci Instrum; 2013 May; 84(5):055002. PubMed ID: 23742582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric properties of an embedded piezoelectric layer.
    Kohler B; Stauch G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):740-8. PubMed ID: 18263262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.
    Langley RS; Cotoni V
    J Acoust Soc Am; 2010 Apr; 127(4):2118-28. PubMed ID: 20369993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive Attenuation of Mechanical Vibrations with a Superelastic SMA Bending Springs: An Experimental Investigation.
    Senko R; Almeida VS; Dos Reis RPB; Oliveira AG; Silva AA; Rodrigues MC; de Carvalho LH; Lima AGB
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric actuator design for MR elastography: implementation and vibration issues.
    Tse ZT; Chan YJ; Janssen H; Hamed A; Young I; Lamperth M
    Int J Med Robot; 2011 Sep; 7(3):353-60. PubMed ID: 21793149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A FEM-based method using harmonic overtones to determine the effective elastic, dielectric, and piezoelectric parameters of freely vibrating thick piezoelectric disks.
    Jonsson UG; Andersson BM; Lindahl OA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):243-55. PubMed ID: 23287929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and Embedded Internet of Things Input Shaping Control for Overhead Cranes Transporting Multibody Payloads.
    Peláez G; Vaugan J; Izquierdo P; Rubio H; García-Prada JC
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of wall vibrations on the sound of brass wind instruments.
    Kausel W; Zietlow DW; Moore TR
    J Acoust Soc Am; 2010 Nov; 128(5):3161-74. PubMed ID: 21110611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double basses on the stage floor: tuning fork-tabletop effect, or not?
    Guettler K; Askenfelt A; Buen A
    J Acoust Soc Am; 2012 Jan; 131(1):795-806. PubMed ID: 22280702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal virtual mechanical impedances for the vibroacoustic active control of a thin plate.
    Michau M; Berry A; Micheau P; Herzog P
    J Acoust Soc Am; 2015 Jan; 137(1):199-207. PubMed ID: 25618051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.
    Aggogeri F; Borboni A; Merlo A; Pellegrini N; Ricatto R
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27681732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2.
    Oh TI; Wi H; Kim DY; Yoo PJ; Woo EJ
    Physiol Meas; 2011 Jul; 32(7):835-49. PubMed ID: 21646706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dictums for problem solving and approximation in mathematical acoustics: examples involving low-frequency vibration and radiation.
    Pierce AD; Thiam AG
    J Acoust Soc Am; 2012 Mar; 131(3):2367-93. PubMed ID: 22423784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.
    Wang Z; Mills R; Luo H; Zheng X; Hou W; Wang L; Brown SI; Cuschieri A
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):452-8. PubMed ID: 21041151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.