These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 26931895)

  • 1. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility.
    Praveen K; Rajiniganth MP; Arun AD; Sahoo P; Murty SA
    Rev Sci Instrum; 2016 Feb; 87(2):025111. PubMed ID: 26931895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.
    Malathi N; Sahoo P; Ananthanarayanan R; Murali N
    Rev Sci Instrum; 2015 Feb; 86(2):025103. PubMed ID: 25725884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants.
    Sanga R; Agarwal S; Sivaramakrishna M; Rao GP
    Rev Sci Instrum; 2018 Apr; 89(4):045007. PubMed ID: 29716318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.
    Choi S; Lee H; Moon W
    J Acoust Soc Am; 2010 Sep; 128(3):1021-32. PubMed ID: 20815439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings.
    Marques CA; Peng GD; Webb DJ
    Opt Express; 2015 Mar; 23(5):6058-72. PubMed ID: 25836830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Characteristic Analysis of Cross-Capacitance Fuel-Level Sensor.
    Yu J; Yu H; Li D
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.
    Sahoo P; Malathi N; Ananthanarayanan R; Praveen K; Murali N
    Rev Sci Instrum; 2011 Nov; 82(11):114102. PubMed ID: 22128994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure compensated fiber laser hydrophone: modeling and experimentation.
    Chandrika UK; Pallayil V; Lim KM; Chew CH
    J Acoust Soc Am; 2013 Oct; 134(4):2710-8. PubMed ID: 24116409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow.
    Raj R; Lakshmanan S; Apigo D; Kanwal A; Liu S; Russell T; Madsen JR; Thomas GA; Farrow RC
    Sens Actuators A Phys; 2015 Oct; 234():223-231. PubMed ID: 26543321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and implementation of an intrinsically safe liquid-level sensor using coaxial cable.
    Jin B; Liu X; Bai Q; Wang D; Wang Y
    Sensors (Basel); 2015 May; 15(6):12613-34. PubMed ID: 26029949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technique to measure eyelid pressure using piezoresistive sensors.
    Shaw AJ; Davis BA; Collins MJ; Carney LG
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2512-7. PubMed ID: 19457740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System-on-fluidics immunoassay device integrating wireless radio-frequency-identification sensor chips.
    Yazawa Y; Oonishi T; Watanabe K; Shiratori A; Funaoka S; Fukushima M
    J Biosci Bioeng; 2014 Sep; 118(3):344-9. PubMed ID: 24735652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligent telemetric stent for wireless monitoring of intravascular pressure and its in vivo testing.
    Chen X; Brox D; Assadsangabi B; Hsiang Y; Takahata K
    Biomed Microdevices; 2014 Oct; 16(5):745-59. PubMed ID: 24903011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The novel measurement method of liquid level and density in airtight container.
    Niu Z; Zhao Y; Tian B; Guo F
    Rev Sci Instrum; 2012 Dec; 83(12):125108. PubMed ID: 23278027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prototype fiber-optic-based pressure probe with built-in temperature compensation with signal recovery by coherence reading.
    Rao YJ; Jackson DA
    Appl Opt; 1993 Dec; 32(34):7110-3. PubMed ID: 20856576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.
    Han Z; Wang Y; Qing X
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.
    Moltchanov S; Levy I; Etzion Y; Lerner U; Broday DM; Fishbain B
    Sci Total Environ; 2015 Jan; 502():537-47. PubMed ID: 25300018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rugged, high precision capacitance diaphragm low pressure gauge for cryogenic use.
    Lago L; Herbeaux C; Bol M; Roy P; Manceron L
    Rev Sci Instrum; 2014 Jan; 85(1):015108. PubMed ID: 24517813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solidification and loss of hydrostaticity in liquid media used for pressure measurements.
    Torikachvili MS; Kim SK; Colombier E; Bud'ko SL; Canfield PC
    Rev Sci Instrum; 2015 Dec; 86(12):123904. PubMed ID: 26724044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.