These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26931999)

  • 1. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
    Kim JY; Cho WH; Dang JJ; Chung KJ; Hwang YS
    Rev Sci Instrum; 2016 Feb; 87(2):02B117. PubMed ID: 26931999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of plasma parameters with magnetic filter field and pressure to maximize H⁻ ion density in a negative hydrogen ion source.
    Cho WH; Dang JJ; Kim JY; Chung KJ; Hwang YS
    Rev Sci Instrum; 2016 Feb; 87(2):02B136. PubMed ID: 26932018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source.
    Chung KJ; Jung BK; An Y; Dang JJ; Hwang YS
    Rev Sci Instrum; 2014 Feb; 85(2):02B119. PubMed ID: 24593559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measurement of the electron energy distribution function in the radio frequency electron cyclotron resonance inductive discharge.
    Chung C; Kim SS; Chang HY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016406. PubMed ID: 14995724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel radio-frequency negative hydrogen ion source in conically converging configuration.
    Jung BK; Dang JJ; An YH; Chung KJ; Hwang YS
    Rev Sci Instrum; 2014 Feb; 85(2):02B112. PubMed ID: 24593552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen negative ion production in a 14 GHz electron cyclotron resonance compact ion source with a cone-shaped magnetic filter.
    Ichikawa T; Kasuya T; Kenmotsu T; Maeno S; Nishiura M; Shimozuma T; Yamaoka H; Wada M
    Rev Sci Instrum; 2014 Feb; 85(2):02B132. PubMed ID: 24593572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H2(+) beam production.
    Jia X; Zhang T; Luo S; Wang C; Zheng X; Yin Z; Zhong J; Wu L; Qin J
    Rev Sci Instrum; 2010 Feb; 81(2):02A321. PubMed ID: 20192342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling multiple-frequency electron cyclotron resonance heating.
    Spencer JA; Kim C; Kim JS; Evstatiev EG; Svidzinski V; Cluggish B
    Rev Sci Instrum; 2014 Feb; 85(2):02A914. PubMed ID: 24593493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.
    Ferracin P; Caspi S; Felice H; Leitner D; Lyneis CM; Prestemon S; Sabbi GL; Todd DS
    Rev Sci Instrum; 2010 Feb; 81(2):02A309. PubMed ID: 20192330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourth generation electron cyclotron resonance ion sources.
    Lyneis CM; Leitner D; Todd DS; Sabbi G; Prestemon S; Caspi S; Ferracin P
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A321. PubMed ID: 18315111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.
    Rodrigues G; Becker R; Hamm RW; Baskaran R; Kanjilal D; Roy A
    Rev Sci Instrum; 2014 Feb; 85(2):02A740. PubMed ID: 24593474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of radiofrequency coupling for negative ion sources.
    Cavenago M; Petrenko S
    Rev Sci Instrum; 2012 Feb; 83(2):02B503. PubMed ID: 22380302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field.
    Oikawa K; Saito Y; Komizunai S; Takahashi K; Ando A
    Rev Sci Instrum; 2014 Feb; 85(2):02B124. PubMed ID: 24593564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source.
    Leitner D; Benitez JY; Lyneis CM; Todd DS; Ropponen T; Ropponen J; Koivisto H; Gammino S
    Rev Sci Instrum; 2008 Mar; 79(3):033302. PubMed ID: 18377002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.
    Nakamura T; Wada H; Asaji T; Furuse M
    Rev Sci Instrum; 2016 Feb; 87(2):02A737. PubMed ID: 26931955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of atomic hydrogen anion density in a permanent magnet based helicon ion source (HELEN) by using pulsed ring down spectroscopy.
    Mukhopadhyay D; Pandey A; Bandyopadhyay M; Tyagi H; Yadav R; Chakraborty A
    Rev Sci Instrum; 2019 Aug; 90(8):083103. PubMed ID: 31472659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source.
    Asaji T; Nakamura T; Furuse M; Hitobo T; Uchida T; Muramatsu M; Kato Y
    Rev Sci Instrum; 2016 Feb; 87(2):02A730. PubMed ID: 26931948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power efficiency improvements with the radio frequency H⁻ ion source.
    Kalvas T; Tarvainen O; Komppula J; Koivisto H; Tuunanen J; Potkins D; Stewart T; Dehnel M
    Rev Sci Instrum; 2016 Feb; 87(2):02B102. PubMed ID: 26931984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source.
    Castro G; Mascali D; Romano FP; Celona L; Gammino S; Lanaia D; Di Giugno R; Miracoli R; Serafino T; Di Bartolo F; Gambino N; Ciavola G
    Rev Sci Instrum; 2012 Feb; 83(2):02B501. PubMed ID: 22380300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source.
    Kumakura S; Kurisu Y; Kimura D; Yano K; Imai Y; Sato F; Kato Y; Iida T
    Rev Sci Instrum; 2014 Feb; 85(2):02A925. PubMed ID: 24593504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.