These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 26932124)

  • 1. The missing cause approach to unmeasured confounding in pharmacoepidemiology.
    Abrahamowicz M; Bjerre LM; Beauchamp ME; LeLorier J; Burne R
    Stat Med; 2016 Mar; 35(7):1001-16. PubMed ID: 26932124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias-variance trade-off in pharmacoepidemiological studies using physician-preference-based instrumental variables: a simulation study.
    Ionescu-Ittu R; Delaney JA; Abrahamowicz M
    Pharmacoepidemiol Drug Saf; 2009 Jul; 18(7):562-71. PubMed ID: 19437424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing the variance of the prescribing preference-based instrumental variable estimates of the treatment effect.
    Abrahamowicz M; Beauchamp ME; Ionescu-Ittu R; Delaney JA; Pilote L
    Am J Epidemiol; 2011 Aug; 174(4):494-502. PubMed ID: 21765169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation study of instrumental variable approaches with an application to a study of the antidiabetic effect of bezafibrate.
    Cai B; Hennessy S; Flory JH; Sha D; Ten Have TR; Small DS
    Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2():114-20. PubMed ID: 22552986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Martingale residual-based method to control for confounders measured only in a validation sample in time-to-event analysis.
    Burne RM; Abrahamowicz M
    Stat Med; 2016 Nov; 35(25):4588-4606. PubMed ID: 27306611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding.
    McCandless LC; Gustafson P; Levy AR; Richardson S
    Stat Med; 2012 Feb; 31(4):383-96. PubMed ID: 22253142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.
    Schneeweiss S
    Pharmacoepidemiol Drug Saf; 2006 May; 15(5):291-303. PubMed ID: 16447304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.
    Brookhart MA; Wang PS; Solomon DH; Schneeweiss S
    Epidemiology; 2006 May; 17(3):268-75. PubMed ID: 16617275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of prior event rate ratio adjustment method in pharmacoepidemiology: a simulation study.
    Uddin MJ; Groenwold RH; van Staa TP; de Boer A; Belitser SV; Hoes AW; Roes KC; Klungel OH
    Pharmacoepidemiol Drug Saf; 2015 May; 24(5):468-77. PubMed ID: 25410590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental variable analysis in the context of dichotomous outcome and exposure with a numerical experiment in pharmacoepidemiology.
    Koladjo BF; Escolano S; Tubert-Bitter P
    BMC Med Res Methodol; 2018 Jun; 18(1):61. PubMed ID: 29929467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing unmeasured confounding in comparative observational research.
    Zhang X; Faries DE; Li H; Stamey JD; Imbens GW
    Pharmacoepidemiol Drug Saf; 2018 Apr; 27(4):373-382. PubMed ID: 29383840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
    Burne RM; Abrahamowicz M
    Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies.
    Yu M; Xie D; Wang X; Weiner MG; Tannen RL
    Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2():60-8. PubMed ID: 22552981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias Formulas for Estimating Direct and Indirect Effects When Unmeasured Confounding Is Present.
    le Cessie S
    Epidemiology; 2016 Jan; 27(1):125-32. PubMed ID: 26426943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.