These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26932275)

  • 21. Detecting reliable non interacting proteins (NIPs) significantly enhancing the computational prediction of protein-protein interactions using machine learning methods.
    Srivastava A; Mazzocco G; Kel A; Wyrwicz LS; Plewczynski D
    Mol Biosyst; 2016 Mar; 12(3):778-85. PubMed ID: 26738778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.
    Zhang M; Su Q; Lu Y; Zhao M; Niu B
    Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. deepHPI: a comprehensive deep learning platform for accurate prediction and visualization of host-pathogen protein-protein interactions.
    Kaundal R; Loaiza CD; Duhan N; Flann N
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35511057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HVIDB: a comprehensive database for human-virus protein-protein interactions.
    Yang X; Lian X; Fu C; Wuchty S; Yang S; Zhang Z
    Brief Bioinform; 2021 Mar; 22(2):832-844. PubMed ID: 33515030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Techniques for transferring host-pathogen protein interactions knowledge to new tasks.
    Kshirsagar M; Schleker S; Carbonell J; Klein-Seetharaman J
    Front Microbiol; 2015; 6():36. PubMed ID: 25699028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting Interactions between Virus and Host Proteins Using Repeat Patterns and Composition of Amino Acids.
    Alguwaizani S; Park B; Zhou X; Huang DS; Han K
    J Healthc Eng; 2018; 2018():1391265. PubMed ID: 29854357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multitask learning for host-pathogen protein interactions.
    Kshirsagar M; Carbonell J; Klein-Seetharaman J
    Bioinformatics; 2013 Jul; 29(13):i217-26. PubMed ID: 23812987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices.
    Craig RA; Liao L
    BMC Bioinformatics; 2007 Jan; 8():6. PubMed ID: 17212819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences.
    Wang J; Zhang L; Jia L; Ren Y; Yu G
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep-HPI-pred: An R-Shiny applet for network-based classification and prediction of Host-Pathogen protein-protein interactions.
    Tahir Ul Qamar M; Noor F; Guo YX; Zhu XT; Chen LL
    Comput Struct Biotechnol J; 2024 Dec; 23():316-329. PubMed ID: 38192372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction.
    Karpuzcu BA; Türk E; Ibrahim AH; Karabulut OC; Süzek BE
    Methods Mol Biol; 2023; 2690():401-417. PubMed ID: 37450162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational model for predicting protein interactions based on multidomain collaboration.
    Jang WH; Jung SH; Han DS
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1081-90. PubMed ID: 22508910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leveraging Experimental Details for an Improved Understanding of Host-Pathogen Interactome.
    Ammari M; McCarthy F; Nanduri B
    Curr Protoc Bioinformatics; 2018 Mar; 61(1):8.26.1-8.26.12. PubMed ID: 30040202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based prediction of host-pathogen protein interactions.
    Mariano R; Wuchty S
    Curr Opin Struct Biol; 2017 Jun; 44():119-124. PubMed ID: 28319831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational prediction of the human-microbial oral interactome.
    Coelho ED; Arrais JP; Matos S; Pereira C; Rosa N; Correia MJ; Barros M; Oliveira JL
    BMC Syst Biol; 2014 Feb; 8():24. PubMed ID: 24576332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seq-BEL: Sequence-Based Ensemble Learning for Predicting Virus-Human Protein-Protein Interaction.
    Ma Y; He T; Tan Y; Jiang X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1322-1333. PubMed ID: 32750886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Literature mining of host-pathogen interactions: comparing feature-based supervised learning and language-based approaches.
    Thieu T; Joshi S; Warren S; Korkin D
    Bioinformatics; 2012 Mar; 28(6):867-75. PubMed ID: 22285561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.