BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

825 related articles for article (PubMed ID: 26932327)

  • 1. SUMO-regulated mitochondrial function in Parkinson's disease.
    Guerra de Souza AC; Prediger RD; Cimarosti H
    J Neurochem; 2016 Jun; 137(5):673-86. PubMed ID: 26932327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO and Parkinson's disease.
    Eckermann K
    Neuromolecular Med; 2013 Dec; 15(4):737-59. PubMed ID: 23979994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detrimental effects of oxidative losses in parkin activity in a model of sporadic Parkinson's disease are attenuated by restoration of PGC1alpha.
    Siddiqui A; Rane A; Rajagopalan S; Chinta SJ; Andersen JK
    Neurobiol Dis; 2016 Sep; 93():115-20. PubMed ID: 27185595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease.
    Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of dopaminergic neuron loss in Parkinson's disease.
    Surmeier DJ
    FEBS J; 2018 Oct; 285(19):3657-3668. PubMed ID: 30028088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of parkin in Parkinson's disease].
    Miklya I; Göltl P; Hafenscher F; Pencz N
    Neuropsychopharmacol Hung; 2014 Jun; 16(2):67-76. PubMed ID: 24978049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkinson's disease.
    Thomas B; Beal MF
    Hum Mol Genet; 2007 Oct; 16 Spec No. 2():R183-94. PubMed ID: 17911161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic activation of the human MnSOD promoter by DJ-1 and PGC-1alpha: regulation by SUMOylation and oxidation.
    Zhong N; Xu J
    Hum Mol Genet; 2008 Nov; 17(21):3357-67. PubMed ID: 18689799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein.
    Ciron C; Zheng L; Bobela W; Knott GW; Leone TC; Kelly DP; Schneider BL
    Acta Neuropathol Commun; 2015 Apr; 3():16. PubMed ID: 25853296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease.
    Dolgacheva LP; Berezhnov AV; Fedotova EI; Zinchenko VP; Abramov AY
    J Bioenerg Biomembr; 2019 Jun; 51(3):175-188. PubMed ID: 31054074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neurons.
    Zheng L; Bernard-Marissal N; Moullan N; D'Amico D; Auwerx J; Moore DJ; Knott G; Aebischer P; Schneider BL
    Hum Mol Genet; 2017 Feb; 26(3):582-598. PubMed ID: 28053050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease.
    Ferretta A; Gaballo A; Tanzarella P; Piccoli C; Capitanio N; Nico B; Annese T; Di Paola M; Dell'aquila C; De Mari M; Ferranini E; Bonifati V; Pacelli C; Cocco T
    Biochim Biophys Acta; 2014 Jul; 1842(7):902-15. PubMed ID: 24582596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease.
    Liu L; Peritore C; Ginsberg J; Shih J; Arun S; Donmez G
    Behav Brain Res; 2015 Mar; 281():215-21. PubMed ID: 25541039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin Resistance Promotes Parkinson's Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling.
    Hong CT; Chen KY; Wang W; Chiu JY; Wu D; Chao TY; Hu CJ; Chau KD; Bamodu OA
    Cells; 2020 Mar; 9(3):. PubMed ID: 32192190
    [No Abstract]   [Full Text] [Related]  

  • 18. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2012 Nov; 53(9):1791-806. PubMed ID: 22967820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease.
    Sohrabi T; Mirzaei-Behbahani B; Zadali R; Pirhaghi M; Morozova-Roche LA; Meratan AA
    J Mol Biol; 2023 Jun; 435(12):167992. PubMed ID: 36736886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Essential Role of Drp1 and Its Regulation by S-Nitrosylation of Parkin in Dopaminergic Neurodegeneration: Implications for Parkinson's Disease.
    Zhang Z; Liu L; Jiang X; Zhai S; Xing D
    Antioxid Redox Signal; 2016 Oct; 25(11):609-622. PubMed ID: 27267045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.