These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26932784)

  • 1. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor.
    Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F
    Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.
    Lee S; Kim YI; Kim KB
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7319-24. PubMed ID: 24245250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass sensitivity calculation of the protein layer using love wave SAW biosensor.
    Lee S; Kim KB; Il Kim Y
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6107-12. PubMed ID: 22966717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance.
    Borile G; Rossi S; Filippi A; Gazzola E; Capaldo P; Tregnago C; Pigazzi M; Romanato F
    Biophys Chem; 2019 Nov; 254():106262. PubMed ID: 31514114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.
    Rossi S; Gazzola E; Capaldo P; Borile G; Romanato F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A disposable polymer sensor chip combined with micro-fluidics and surface plasmon read-out.
    Zhang N; Liu H; Knoll W
    Biosens Bioelectron; 2009 Feb; 24(6):1783-7. PubMed ID: 18835707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.
    Manera MG; Ferreiro-Vila E; Garcia-Martin JM; Garcia-Martin A; Rella R
    Biosens Bioelectron; 2014 Aug; 58():114-20. PubMed ID: 24632137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements.
    Samarentsis AG; Pantazis AK; Tsortos A; Friedt JM; Gizeli E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPR biosensing coupled to a digital microfluidic microstreaming system.
    Galopin E; Beaugeois M; Pinchemel B; Camart JC; Bouazaoui M; Thomy V
    Biosens Bioelectron; 2007 Dec; 23(5):746-50. PubMed ID: 17884436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex detection of urinary miRNA biomarkers by transmission surface plasmon resonance.
    Yeung WK; Chen HY; Sun JJ; Hsieh TH; Mousavi MZ; Chen HH; Lee KL; Lin H; Wei PK; Cheng JY
    Analyst; 2018 Sep; 143(19):4715-4722. PubMed ID: 30188550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel scan surface plasmon resonance biochip with stationary optics and baseline updating capability.
    Wang C; Liu R; Zhang W; Wang Y; Xu K; Yue Z; Liu G
    J Biomed Opt; 2013 Nov; 18(11):115002. PubMed ID: 24194062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement.
    Law WC; Yong KT; Baev A; Prasad PN
    ACS Nano; 2011 Jun; 5(6):4858-64. PubMed ID: 21510685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.
    Francis LA; Friedt JM; Zhou C; Bertrand P
    Anal Chem; 2006 Jun; 78(12):4200-9. PubMed ID: 16771551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon enhanced diffraction for label-free biosensing.
    Yu F; Tian S; Yao D; Knoll W
    Anal Chem; 2004 Jul; 76(13):3530-5. PubMed ID: 15228321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization.
    Bardin F; Bellemain A; Roger G; Canva M
    Biosens Bioelectron; 2009 Mar; 24(7):2100-5. PubMed ID: 19084391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.
    Kurita R; Yokota Y; Sato Y; Mizutani F; Niwa O
    Anal Chem; 2006 Aug; 78(15):5525-31. PubMed ID: 16878891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.