These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26932823)

  • 1. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy.
    Chao J; Zhang P; Wang Q; Wu N; Zhang F; Hu J; Fan CH; Li B
    Nanoscale; 2016 Mar; 8(11):5842-6. PubMed ID: 26932823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Single-molecule detection and characterization of DNA replication based on DNA origami].
    Wang Q; Fan Y; Li B
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Aug; 34(9):1235-40. PubMed ID: 25263351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of DNA polymerase I Klenow fragment bound to duplex DNA.
    Beese LS; Derbyshire V; Steitz TA
    Science; 1993 Apr; 260(5106):352-5. PubMed ID: 8469987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection.
    Garalde DR; Simon CA; Dahl JM; Wang H; Akeson M; Lieberman KR
    J Biol Chem; 2011 Apr; 286(16):14480-92. PubMed ID: 21362617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-specifically platinum metal deposition on enzymatically synthesized DNA block copolymer.
    Tanaka A; Matsuo Y; Hashimoto Y; Ijiro K
    Chem Commun (Camb); 2008 Sep; (36):4270-2. PubMed ID: 18802540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KF polymerase-based fluorescence aptasensor for the label-free adenosine detection.
    Liao D; Jiao H; Wang B; Lin Q; Yu C
    Analyst; 2012 Feb; 137(4):978-82. PubMed ID: 22183639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring and modeling the kinetics of individual DNA-DNA polymerase complexes on a nanopore.
    Wang H; Hurt N; Dunbar WB
    ACS Nano; 2013 May; 7(5):3876-86. PubMed ID: 23565679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow exo- fragment of DNA polymerase I.
    Kotlyar A; Borovok N; Molotsky T; Klinov D; Dwir B; Kapon E
    Nucleic Acids Res; 2005; 33(20):6515-21. PubMed ID: 16314313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a premature termination of DNA polymerization in vitro by Klenow fragment mutants.
    Zhao G; Wei H; Guan Y
    J Biosci; 2013 Jun; 38(2):279-89. PubMed ID: 23660662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis.
    Turner RM; Grindley ND; Joyce CM
    Biochemistry; 2003 Mar; 42(8):2373-85. PubMed ID: 12600204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of DNA polymerase I (Klenow fragment) under external force.
    Xie P
    J Mol Model; 2013 Mar; 19(3):1379-89. PubMed ID: 23197324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning DNA "strings": modulating the rate of DNA replication with mechanical tension.
    Goel A; Frank-Kamenetskii MD; Ellenberger T; Herschbach D
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8485-9. PubMed ID: 11447284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy.
    Kuzuya A; Sakai Y; Yamazaki T; Xu Y; Komiyama M
    Nat Commun; 2011 Aug; 2():449. PubMed ID: 21863016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realizing directional cloning using sticky ends produced by 3'-5' exonuclease of Klenow fragment.
    Zhao G; Li J; Hu T; Wei H; Guan Y
    J Biosci; 2013 Dec; 38(5):857-66. PubMed ID: 24296888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 8-chlorodeoxyadenosine on DNA synthesis by the Klenow fragment of DNA polymerase I.
    Chen LS; Bahr MH; Sheppard TL
    Bioorg Med Chem Lett; 2003 May; 13(9):1509-12. PubMed ID: 12699743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of a DNA triblock copolymer that is composed of natural and unnatural nucleotides.
    Mitomo H; Watanabe Y; Matsuo Y; Niikura K; Ijiro K
    Chem Asian J; 2015 Feb; 10(2):455-60. PubMed ID: 25388958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.