BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26933063)

  • 1. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.
    Irani S; Yogesha SD; Mayfield J; Zhang M; Zhang Y; Matthews WL; Nie G; Prescott NA; Zhang YJ
    Sci Signal; 2016 Mar; 9(417):ra24. PubMed ID: 26933063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.
    Xiang K; Manley JL; Tong L
    Nat Commun; 2012 Jul; 3():946. PubMed ID: 22781759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rtr1 is a dual specificity phosphatase that dephosphorylates Tyr1 and Ser5 on the RNA polymerase II CTD.
    Hsu PL; Yang F; Smith-Kinnaman W; Yang W; Song JE; Mosley AL; Varani G
    J Mol Biol; 2014 Aug; 426(16):2970-81. PubMed ID: 24951832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Ssu72, an essential eukaryotic phosphatase specific for the C-terminal domain of RNA polymerase II, in complex with a transition state analogue.
    Zhang Y; Zhang M; Zhang Y
    Biochem J; 2011 Mar; 434(3):435-44. PubMed ID: 21204787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins.
    Gibney PA; Fries T; Bailer SM; Morano KA
    Eukaryot Cell; 2008 Jun; 7(6):938-48. PubMed ID: 18408053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation.
    Mosley AL; Pattenden SG; Carey M; Venkatesh S; Gilmore JM; Florens L; Workman JL; Washburn MP
    Mol Cell; 2009 Apr; 34(2):168-78. PubMed ID: 19394294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae.
    Smith-Kinnaman WR; Berna MJ; Hunter GO; True JD; Hsu P; Cabello GI; Fox MJ; Varani G; Mosley AL
    Mol Biosyst; 2014 Jul; 10(7):1730-41. PubMed ID: 24671508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation.
    Hunter GO; Fox MJ; Smith-Kinnaman WR; Gogol M; Fleharty B; Mosley AL
    Mol Cell Biol; 2016 Sep; 36(17):2236-45. PubMed ID: 27247267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex.
    Xiang K; Nagaike T; Xiang S; Kilic T; Beh MM; Manley JL; Tong L
    Nature; 2010 Oct; 467(7316):729-33. PubMed ID: 20861839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally conserved and functionally divergent yeast Ssu72 phosphatases.
    Rodríguez-Torres AM; Lamas-Maceiras M; García-Díaz R; Freire-Picos MA
    FEBS Lett; 2013 Aug; 587(16):2617-22. PubMed ID: 23831060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination.
    Victorino JF; Fox MJ; Smith-Kinnaman WR; Peck Justice SA; Burriss KH; Boyd AK; Zimmerly MA; Chan RR; Hunter GO; Liu Y; Mosley AL
    PLoS Genet; 2020 Mar; 16(3):e1008317. PubMed ID: 32187185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.
    Ghosh A; Shuman S; Lima CD
    Mol Cell; 2008 Nov; 32(4):478-90. PubMed ID: 19026779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1.
    Schwer B; Ghosh A; Sanchez AM; Lima CD; Shuman S
    RNA; 2015 Jun; 21(6):1135-46. PubMed ID: 25883047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases.
    Hausmann S; Koiwa H; Krishnamurthy S; Hampsey M; Shuman S
    J Biol Chem; 2005 Nov; 280(45):37681-8. PubMed ID: 16148005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity.
    Leulliot N; Vicentini G; Jordens J; Quevillon-Cheruel S; Schiltz M; Barford D; van Tilbeurgh H; Goris J
    Mol Cell; 2006 Aug; 23(3):413-24. PubMed ID: 16885030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Saccharomyces cerevisiae type 2A protein phosphatase Pph22p is biochemically different from mammalian PP2A.
    Zabrocki P; Swiatek W; Sugajska E; Thevelein JM; Wera S; Zolnierowicz S
    Eur J Biochem; 2002 Jul; 269(14):3372-82. PubMed ID: 12135475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1.
    Zhang M; Liu J; Kim Y; Dixon JE; Pfaff SL; Gill GN; Noel JP; Zhang Y
    Protein Sci; 2010 May; 19(5):974-86. PubMed ID: 20222012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of RNA polymerase II CTD phosphatases.
    Kamenski T; Heilmeier S; Meinhart A; Cramer P
    Mol Cell; 2004 Aug; 15(3):399-407. PubMed ID: 15304220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase.
    Gray CH; Good VM; Tonks NK; Barford D
    EMBO J; 2003 Jul; 22(14):3524-35. PubMed ID: 12853468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.