These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 26933625)
1. Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model. Khan AQ Springerplus; 2016; 5():126. PubMed ID: 26933625 [TBL] [Abstract][Full Text] [Related]
2. Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor. Lei C; Han X; Wang W Math Biosci Eng; 2022 Apr; 19(7):6659-6679. PubMed ID: 35730276 [TBL] [Abstract][Full Text] [Related]
3. Derivation and Analysis of a Discrete Predator-Prey Model. Streipert SH; Wolkowicz GSK; Bohner M Bull Math Biol; 2022 May; 84(7):67. PubMed ID: 35596850 [TBL] [Abstract][Full Text] [Related]
4. Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting. Han X; Du X Math Biosci Eng; 2023 Aug; 20(9):16939-16961. PubMed ID: 37920041 [TBL] [Abstract][Full Text] [Related]
5. More complex dynamics in a discrete prey-predator model with the Allee effect in prey. Ruan M; Li X; Sun B Math Biosci Eng; 2023 Oct; 20(11):19584-19616. PubMed ID: 38052616 [TBL] [Abstract][Full Text] [Related]
6. Bifurcations and chaos control in a discrete Rosenzweig-Macarthur prey-predator model. Khan AQ; Maqbool A; Alharbi TD Chaos; 2024 Mar; 34(3):. PubMed ID: 38447934 [TBL] [Abstract][Full Text] [Related]
7. An analysis of the stability and bifurcation of a discrete-time predator-prey model with the slow-fast effect on the predator. Ahmed R; Tahir N; Ali Shah N Chaos; 2024 Mar; 34(3):. PubMed ID: 38490186 [TBL] [Abstract][Full Text] [Related]
8. Exploring chaos and bifurcation in a discrete prey-predator based on coupled logistic map. Al-Kaff MO; El-Metwally HA; Elsadany AA; Elabbasy EM Sci Rep; 2024 Jul; 14(1):16118. PubMed ID: 38997275 [TBL] [Abstract][Full Text] [Related]
9. Bifurcations and dynamics of a discrete predator-prey system. Asheghi R J Biol Dyn; 2014; 8(1):161-86. PubMed ID: 24963984 [TBL] [Abstract][Full Text] [Related]
10. Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect. Naik PA; Amer M; Ahmed R; Qureshi S; Huang Z Math Biosci Eng; 2024 Feb; 21(3):4554-4586. PubMed ID: 38549340 [TBL] [Abstract][Full Text] [Related]
11. Effects of prey refuge and predator cooperation on a predator-prey system. Jang SR; Yousef AM J Biol Dyn; 2023 Dec; 17(1):2242372. PubMed ID: 37534883 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation and chaos analysis for a discrete ecological developmental systems. Jiang XW; Chen C; Zhang XH; Chi M; Yan H Nonlinear Dyn; 2021; 104(4):4671-4680. PubMed ID: 33935366 [TBL] [Abstract][Full Text] [Related]
13. Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect. Khan AQ; Ma J; Xiao D J Biol Dyn; 2017 Dec; 11(1):121-146. PubMed ID: 27852167 [TBL] [Abstract][Full Text] [Related]
14. On the Neimark-Sacker bifurcation in a discrete predator-prey system. Hone AN; Irle MV; Thurura GW J Biol Dyn; 2010 Nov; 4(6):594-606. PubMed ID: 22881206 [TBL] [Abstract][Full Text] [Related]
15. Qualitative analysis and phase of chaos control of the predator-prey model with Holling type-III. Al-Kaff MO; El-Metwally HA; Elabbasy EM Sci Rep; 2022 Nov; 12(1):20111. PubMed ID: 36418361 [TBL] [Abstract][Full Text] [Related]
16. Complicate dynamical properties of a discrete slow-fast predator-prey model with ratio-dependent functional response. Li X; Dong J Sci Rep; 2023 Nov; 13(1):20575. PubMed ID: 37996462 [TBL] [Abstract][Full Text] [Related]
17. Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson's blowflies equation. Wang Y; Wang L Adv Differ Equ; 2015; 2015():306. PubMed ID: 26941781 [TBL] [Abstract][Full Text] [Related]
18. Andronov-Hopf and Neimark-Sacker bifurcations in time-delay differential equations and difference equations with applications to models for diseases and animal populations. Darlai R; Moore EJ; Koonprasert S Adv Differ Equ; 2020; 2020(1):190. PubMed ID: 32435267 [TBL] [Abstract][Full Text] [Related]
19. On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex. Jiang J; Niu L J Math Biol; 2017 Apr; 74(5):1223-1261. PubMed ID: 27639701 [TBL] [Abstract][Full Text] [Related]
20. Global behaviour of a predator-prey like model with piecewise constant arguments. Kartal S; Gurcan F J Biol Dyn; 2015; 9():159-71. PubMed ID: 26040292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]