These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 26933686)

  • 21. Bright visible light emission from graphene.
    Kim YD; Kim H; Cho Y; Ryoo JH; Park CH; Kim P; Kim YS; Lee S; Li Y; Park SN; Yoo YS; Yoon D; Dorgan VE; Pop E; Heinz TF; Hone J; Chun SH; Cheong H; Lee SW; Bae MH; Park YD
    Nat Nanotechnol; 2015 Aug; 10(8):676-81. PubMed ID: 26076467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-Broadband Mid-Infrared Metamaterial Absorber Based on Multi-Sized Resonators.
    Huang X; Zhou Z; Cao M; Li R; Sun C; Li X
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers.
    Cai Y; Xu KD; Feng N; Guo R; Lin H; Zhu J
    Opt Express; 2019 Feb; 27(3):3101-3112. PubMed ID: 30732336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.
    Chen JJ; Wang Q; Meng J; Ke X; Van Tendeloo G; Bie YQ; Liu J; Liu K; Liao ZM; Sun D; Yu D
    ACS Nano; 2015 Sep; 9(9):8851-8. PubMed ID: 26279456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared broadband absorber with film-coupled multilayer nanorods.
    Chen X; Gong H; Dai S; Zhao D; Yang Y; Li Q; Qiu M
    Opt Lett; 2013 Jul; 38(13):2247-9. PubMed ID: 23811891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.
    Rahmanzadeh M; Rajabalipanah H; Abdolali A
    Appl Opt; 2018 Feb; 57(4):959-968. PubMed ID: 29400774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions.
    Huang H; Xia H; Xie W; Guo Z; Li H; Xie D
    Sci Rep; 2018 Mar; 8(1):4183. PubMed ID: 29520032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer.
    Miyoshi Y; Fukazawa Y; Amasaka Y; Reckmann R; Yokoi T; Ishida K; Kawahara K; Ago H; Maki H
    Nat Commun; 2018 Mar; 9(1):1279. PubMed ID: 29599460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.
    Ghobadi A; Hajian H; Dereshgi SA; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):15079. PubMed ID: 29118435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-shell particles as efficient broadband absorbers in infrared optical range.
    Evlyukhin AB; Nerkararyan KV; Bozhevolnyi SI
    Opt Express; 2019 Jun; 27(13):17474-17481. PubMed ID: 31252706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic wavy surface for ultrathin semiconductor black absorbers.
    Tang P; Liu G; Liu X; Fu G; Liu Z; Wang J
    Opt Express; 2020 Sep; 28(19):27764-27773. PubMed ID: 32988062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures.
    Deng B; Guo Q; Li C; Wang H; Ling X; Farmer DB; Han SJ; Kong J; Xia F
    ACS Nano; 2016 Dec; 10(12):11172-11178. PubMed ID: 28024379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.