These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
487 related articles for article (PubMed ID: 26933690)
1. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice. Matsumoto T; So YG; Kohno Y; Sawada H; Ikuhara Y; Shibata N Sci Adv; 2016 Feb; 2(2):e1501280. PubMed ID: 26933690 [TBL] [Abstract][Full Text] [Related]
2. Jointed magnetic skyrmion lattices at a small-angle grain boundary directly visualized by advanced electron microscopy. Matsumoto T; So YG; Kohno Y; Sawada H; Ishikawa R; Ikuhara Y; Shibata N Sci Rep; 2016 Oct; 6():35880. PubMed ID: 27775056 [TBL] [Abstract][Full Text] [Related]
3. Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography. Li ZA; Zheng F; Tavabi AH; Caron J; Jin C; Du H; Kovács A; Tian M; Farle M; Dunin-Borkowski RE Nano Lett; 2017 Mar; 17(3):1395-1401. PubMed ID: 28125235 [TBL] [Abstract][Full Text] [Related]
11. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy. Rajeswari J; Huang P; Mancini GF; Murooka Y; Latychevskaia T; McGrouther D; Cantoni M; Baldini E; White JS; Magrez A; Giamarchi T; Rønnow HM; Carbone F Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14212-7. PubMed ID: 26578765 [TBL] [Abstract][Full Text] [Related]
12. Direct Visualisation of Skyrmion Lattice Defect Alignment at Grain Boundaries. Schönenberger T; Huang P; Brun LD; Guanghao L; Magrez A; Carbone F; Rønnow HM Nanoscale Res Lett; 2022 Jan; 17(1):20. PubMed ID: 35089439 [TBL] [Abstract][Full Text] [Related]
13. Zero-Field Skyrmions with a High Topological Number in Itinerant Magnets. Ozawa R; Hayami S; Motome Y Phys Rev Lett; 2017 Apr; 118(14):147205. PubMed ID: 28430467 [TBL] [Abstract][Full Text] [Related]
14. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks. Zhao X; Jin C; Wang C; Du H; Zang J; Tian M; Che R; Zhang Y Proc Natl Acad Sci U S A; 2016 May; 113(18):4918-23. PubMed ID: 27051067 [TBL] [Abstract][Full Text] [Related]
15. Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images. Denneulin T; Kovács A; Boltje R; Kiselev NS; Dunin-Borkowski RE Sci Rep; 2024 May; 14(1):12286. PubMed ID: 38811716 [TBL] [Abstract][Full Text] [Related]
16. Real-space observation of a two-dimensional skyrmion crystal. Yu XZ; Onose Y; Kanazawa N; Park JH; Han JH; Matsui Y; Nagaosa N; Tokura Y Nature; 2010 Jun; 465(7300):901-4. PubMed ID: 20559382 [TBL] [Abstract][Full Text] [Related]
17. Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State. Leonov AO Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330681 [TBL] [Abstract][Full Text] [Related]
18. Hysteretic Responses of Skyrmion Lattices to Electric Fields in Magnetoelectric Cu Han MG; Camino F; Vorobyev PA; Garlow J; Rov R; Söhnel T; Seidel J; Mostovoy M; Tretiakov OA; Zhu Y Nano Lett; 2023 Aug; 23(15):7143-7149. PubMed ID: 37523664 [TBL] [Abstract][Full Text] [Related]
19. Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films. Je SG; Vallobra P; Srivastava T; Rojas-Sánchez JC; Pham TH; Hehn M; Malinowski G; Baraduc C; Auffret S; Gaudin G; Mangin S; Béa H; Boulle O Nano Lett; 2018 Nov; 18(11):7362-7371. PubMed ID: 30295499 [TBL] [Abstract][Full Text] [Related]