BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26934055)

  • 1. Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of either Aldehydes or Amines.
    Tinnis F; Volkov A; Slagbrand T; Adolfsson H
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4562-6. PubMed ID: 26934055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines.
    Das S; Addis D; Junge K; Beller M
    Chemistry; 2011 Oct; 17(43):12186-92. PubMed ID: 21915925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines.
    Zhang M; Jiao H; Ma H; Li R; Han B; Zhang Y; Wang J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane.
    Mukherjee D; Shirase S; Mashima K; Okuda J
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13326-13329. PubMed ID: 27650798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Intermolecular Coupling of Arenes with Secondary Amides: Chemoselective Synthesis of Aromatic Ketimines and Ketones, and N-Deacylation of Secondary Amides.
    Huang PQ; Huang YH; Xiao KJ
    J Org Chem; 2016 Oct; 81(19):9020-9027. PubMed ID: 27603045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis.
    Kehner RA; Zhang G; Bayeh-Romero L
    J Am Chem Soc; 2023 Mar; 145(9):4921-4927. PubMed ID: 36809854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Catalytic Hydrogenation of Simple Amides: A Highly Efficient Approach from Amides to Amines and Alcohols.
    Shi L; Tan X; Long J; Xiong X; Yang S; Xue P; Lv H; Zhang X
    Chemistry; 2017 Jan; 23(3):546-548. PubMed ID: 27807893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective reduction of carboxamides.
    Volkov A; Tinnis F; Slagbrand T; Trillo P; Adolfsson H
    Chem Soc Rev; 2016 Dec; 45(24):6685-6697. PubMed ID: 27775122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh-catalyzed C-C cleavage of benzyl/allylic alcohols to produce benzyl/allylic amines or other alcohols by nucleophilic addition of intermediate rhodacycles to aldehydes and imines.
    Zhang XS; Li Y; Li H; Chen K; Lei ZQ; Shi ZJ
    Chemistry; 2012 Dec; 18(50):16214-25. PubMed ID: 23080063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides.
    Fang T; Gao XH; Tang RY; Zhang XG; Deng CL
    Chem Commun (Camb); 2014 Dec; 50(94):14775-7. PubMed ID: 25317723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethylzinc-initiated radical reactions.
    Akindele T; Yamada K; Tomioka K
    Acc Chem Res; 2009 Feb; 42(2):345-55. PubMed ID: 19113862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.
    Shi R; Zhang H; Lu L; Gan P; Sha Y; Zhang H; Liu Q; Beller M; Lei A
    Chem Commun (Camb); 2015 Feb; 51(15):3247-50. PubMed ID: 25610923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straightforward α-Amino Nitrile Synthesis Through Mo(CO)
    Trillo P; Slagbrand T; Adolfsson H
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12347-12351. PubMed ID: 30084524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counterintuitive chemoselectivity in the reduction of carbonyl compounds.
    Iwasaki T; Nozaki K
    Nat Rev Chem; 2024 Jun; ():. PubMed ID: 38831138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-catalytic reduction of secondary amides to imines and aldehydes.
    Lee SH; Nikonov GI
    Dalton Trans; 2014 Jun; 43(23):8888-93. PubMed ID: 24798570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-catalyzed aerobic oxidative C-C bond cleavage of unstrained ketones with air and amines.
    Zhou W; Fan W; Jiang Q; Liang YF; Jiao N
    Org Lett; 2015 May; 17(10):2542-5. PubMed ID: 25951433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly chemoselective metal-free reduction of phosphine oxides to phosphines.
    Li Y; Lu LQ; Das S; Pisiewicz S; Junge K; Beller M
    J Am Chem Soc; 2012 Nov; 134(44):18325-9. PubMed ID: 23062083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.