These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26934055)

  • 1. Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of either Aldehydes or Amines.
    Tinnis F; Volkov A; Slagbrand T; Adolfsson H
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4562-6. PubMed ID: 26934055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines.
    Das S; Addis D; Junge K; Beller M
    Chemistry; 2011 Oct; 17(43):12186-92. PubMed ID: 21915925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines.
    Zhang M; Jiao H; Ma H; Li R; Han B; Zhang Y; Wang J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane.
    Mukherjee D; Shirase S; Mashima K; Okuda J
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13326-13329. PubMed ID: 27650798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Intermolecular Coupling of Arenes with Secondary Amides: Chemoselective Synthesis of Aromatic Ketimines and Ketones, and N-Deacylation of Secondary Amides.
    Huang PQ; Huang YH; Xiao KJ
    J Org Chem; 2016 Oct; 81(19):9020-9027. PubMed ID: 27603045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis.
    Kehner RA; Zhang G; Bayeh-Romero L
    J Am Chem Soc; 2023 Mar; 145(9):4921-4927. PubMed ID: 36809854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Catalytic Hydrogenation of Simple Amides: A Highly Efficient Approach from Amides to Amines and Alcohols.
    Shi L; Tan X; Long J; Xiong X; Yang S; Xue P; Lv H; Zhang X
    Chemistry; 2017 Jan; 23(3):546-548. PubMed ID: 27807893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoselective reduction of carboxamides.
    Volkov A; Tinnis F; Slagbrand T; Trillo P; Adolfsson H
    Chem Soc Rev; 2016 Dec; 45(24):6685-6697. PubMed ID: 27775122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh-catalyzed C-C cleavage of benzyl/allylic alcohols to produce benzyl/allylic amines or other alcohols by nucleophilic addition of intermediate rhodacycles to aldehydes and imines.
    Zhang XS; Li Y; Li H; Chen K; Lei ZQ; Shi ZJ
    Chemistry; 2012 Dec; 18(50):16214-25. PubMed ID: 23080063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides.
    Fang T; Gao XH; Tang RY; Zhang XG; Deng CL
    Chem Commun (Camb); 2014 Dec; 50(94):14775-7. PubMed ID: 25317723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethylzinc-initiated radical reactions.
    Akindele T; Yamada K; Tomioka K
    Acc Chem Res; 2009 Feb; 42(2):345-55. PubMed ID: 19113862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.
    Shi R; Zhang H; Lu L; Gan P; Sha Y; Zhang H; Liu Q; Beller M; Lei A
    Chem Commun (Camb); 2015 Feb; 51(15):3247-50. PubMed ID: 25610923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Straightforward α-Amino Nitrile Synthesis Through Mo(CO)
    Trillo P; Slagbrand T; Adolfsson H
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12347-12351. PubMed ID: 30084524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counterintuitive chemoselectivity in the reduction of carbonyl compounds.
    Iwasaki T; Nozaki K
    Nat Rev Chem; 2024 Jul; 8(7):518-534. PubMed ID: 38831138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-catalytic reduction of secondary amides to imines and aldehydes.
    Lee SH; Nikonov GI
    Dalton Trans; 2014 Jun; 43(23):8888-93. PubMed ID: 24798570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-catalyzed aerobic oxidative C-C bond cleavage of unstrained ketones with air and amines.
    Zhou W; Fan W; Jiang Q; Liang YF; Jiao N
    Org Lett; 2015 May; 17(10):2542-5. PubMed ID: 25951433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly chemoselective metal-free reduction of phosphine oxides to phosphines.
    Li Y; Lu LQ; Das S; Pisiewicz S; Junge K; Beller M
    J Am Chem Soc; 2012 Nov; 134(44):18325-9. PubMed ID: 23062083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.