BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26934287)

  • 1. SDF-1 controls the muscle and blood vessel formation of the somite.
    Abduelmula A; Huang R; Pu Q; Tamamura H; Morosan-Puopolo G; Brand-Saberi B
    Int J Dev Biol; 2016; 60(1-3):29-38. PubMed ID: 26934287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos.
    Yusuf F; Rehimi R; Moroşan-Puopolo G; Dai F; Zhang X; Brand-Saberi B
    Dev Dyn; 2006 Nov; 235(11):3007-15. PubMed ID: 16958136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells.
    Vasyutina E; Stebler J; Brand-Saberi B; Schulz S; Raz E; Birchmeier C
    Genes Dev; 2005 Sep; 19(18):2187-98. PubMed ID: 16166380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites.
    Borycki AG; Strunk KE; Savary R; Emerson CP
    Dev Biol; 1997 May; 185(2):185-200. PubMed ID: 9187082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration.
    Hunger C; Ödemis V; Engele J
    Exp Cell Res; 2012 Oct; 318(17):2178-90. PubMed ID: 22766125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development.
    Masyuk M; Brand-Saberi B
    Results Probl Cell Differ; 2015; 56():1-23. PubMed ID: 25344664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between limb muscle and endothelial cells migrating from single somite.
    Huang R; Zhi Q; Christ B
    Anat Embryol (Berl); 2003 Mar; 206(4):283-9. PubMed ID: 12649726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis.
    Abou-Elhamd A; Alrefaei AF; Mok GF; Garcia-Morales C; Abu-Elmagd M; Wheeler GN; Münsterberg AE
    Dev Biol; 2015 Jun; 402(1):61-71. PubMed ID: 25796573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of somites, muscle, and skeleton is independent of signals from the Wolffian duct.
    Krück S; Nesemann J; Scaal M
    Dev Dyn; 2013 Aug; 242(8):941-8. PubMed ID: 23681750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and bicistronic expression of two genes in somite- and lateral plate-derived tissues to study chick limb development.
    Bourgeois A; Esteves de Lima J; Charvet B; Kawakami K; Stricker S; Duprez D
    BMC Dev Biol; 2015 Oct; 15():39. PubMed ID: 26518454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and cellular biology of avian somite development.
    Stockdale FE; Nikovits W; Christ B
    Dev Dyn; 2000 Nov; 219(3):304-21. PubMed ID: 11066088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemokine Sdf-1 and its receptor Cxcr4 are required for formation of muscle in zebrafish.
    Chong SW; Nguyet LM; Jiang YJ; Korzh V
    BMC Dev Biol; 2007 May; 7():54. PubMed ID: 17517144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate.
    Katsumoto K; Kume S
    Development; 2011 May; 138(10):1947-55. PubMed ID: 21490062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle.
    Itoh N; Mima T; Mikawa T
    Development; 1996 Jan; 122(1):291-300. PubMed ID: 8565841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three different fates of cells migrating from somites into the limb bud.
    He L; Papoutsi M; Huang R; Tomarev SI; Christ B; Kurz H; Wilting J
    Anat Embryol (Berl); 2003 Jul; 207(1):29-34. PubMed ID: 12768422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis.
    Leal MA; Fickel SR; Sabillo A; Ramirez J; Vergara HM; Nave C; Saw D; Domingo CR
    Dev Dyn; 2014 Apr; 243(4):509-26. PubMed ID: 24357195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis.
    Mayeuf-Louchart A; Montarras D; Bodin C; Kume T; Vincent SD; Buckingham M
    Development; 2016 Mar; 143(5):872-9. PubMed ID: 26839363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche.
    Kowalski K; Dos Santos M; Maire P; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2018 Sep; 9(1):258. PubMed ID: 30261919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SDF-1α/CXCR4 signaling mediates digit tip regeneration promoted by BMP-2.
    Lee J; Marrero L; Yu L; Dawson LA; Muneoka K; Han M
    Dev Biol; 2013 Oct; 382(1):98-109. PubMed ID: 23916851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of responsive cells in the developing somite supports a role for beta-catenin-dependent Wnt signaling in maintaining the DML myogenic progenitor pool.
    Brauner I; Spicer DB; Krull CE; Venuti JM
    Dev Dyn; 2010 Jan; 239(1):222-36. PubMed ID: 19795517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.