BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26934297)

  • 1. Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate.
    Dutta D; Kumar N; D P Willcox M
    Biofouling; 2016; 32(4):429-38. PubMed ID: 26934297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of chemoselective surface attachment of the cationic peptide melimine and its effects on antimicrobial activity.
    Chen R; Willcox MD; Cole N; Ho KK; Rasul R; Denman JA; Kumar N
    Acta Biomater; 2012 Dec; 8(12):4371-9. PubMed ID: 22842034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization and in vitro activity of a surface-attached antimicrobial cationic peptide.
    Chen R; Cole N; Willcox MD; Park J; Rasul R; Carter E; Kumar N
    Biofouling; 2009; 25(6):517-24. PubMed ID: 19408136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses.
    Dutta D; Cole N; Kumar N; Willcox MD
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):175-82. PubMed ID: 23211820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Silicone Hydrogel Antimicrobial Contact Lenses with Mel4 Peptide Coating.
    Dutta D; Kamphuis B; Ozcelik B; Thissen H; Pinarbasi R; Kumar N; Willcox MDP
    Optom Vis Sci; 2018 Oct; 95(10):937-946. PubMed ID: 30234828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses.
    Willcox MD; Hume EB; Aliwarga Y; Kumar N; Cole N
    J Appl Microbiol; 2008 Dec; 105(6):1817-25. PubMed ID: 19016975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies.
    Dutta D; Ozkan J; Willcox MD
    Optom Vis Sci; 2014 May; 91(5):570-81. PubMed ID: 24759327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models.
    Chen R; Willcox MD; Ho KK; Smyth D; Kumar N
    Biomaterials; 2016 Apr; 85():142-51. PubMed ID: 26871890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Albumin and fibrinogen adsorption on cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethylmethacrylate)) surfaces.
    Martins MC; Wang D; Ji J; Feng L; Barbosa MA
    J Biomater Sci Polym Ed; 2003; 14(5):439-55. PubMed ID: 12807146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the surface bound antimicrobial peptides melimine and Mel4 with
    Yasir M; Dutta D; Kumar N; Willcox MDP
    Biofouling; 2020 Oct; 36(9):1019-1030. PubMed ID: 33161763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model.
    Dutta D; Vijay AK; Kumar N; Willcox MD
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5616-5624. PubMed ID: 27768798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections.
    Kazemzadeh-Narbat M; Kindrachuk J; Duan K; Jenssen H; Hancock RE; Wang R
    Biomaterials; 2010 Dec; 31(36):9519-26. PubMed ID: 20970848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melimine-Modified 3D-Printed Polycaprolactone Scaffolds for the Prevention of Biofilm-Related Biomaterial Infections.
    Cometta S; Jones RT; Juárez-Saldivar A; Donose BC; Yasir M; Bock N; Dargaville TR; Bertling K; Brünig M; Rakić AD; Willcox M; Hutmacher DW
    ACS Nano; 2022 Oct; 16(10):16497-16512. PubMed ID: 36245096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pHEMA@AGMNA-1: A novel material for the development of antibacterial contact lens.
    Rossos AK; Banti CN; Kalampounias AG; Papachristodoulou C; Kordatos K; Zoumpoulakis P; Mavromoustakos T; Kourkoumelis N; Hadjikakou SK
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110770. PubMed ID: 32279741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.
    Gao Q; Yu M; Su Y; Xie M; Zhao X; Li P; Ma PX
    Acta Biomater; 2017 Mar; 51():112-124. PubMed ID: 28131941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections.
    Kazemzadeh-Narbat M; Lai BF; Ding C; Kizhakkedathu JN; Hancock RE; Wang R
    Biomaterials; 2013 Aug; 34(24):5969-77. PubMed ID: 23680363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces.
    Alves D; Magalhães A; Grzywacz D; Neubauer D; Kamysz W; Pereira MO
    Acta Biomater; 2016 Oct; 44():313-22. PubMed ID: 27514277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating.
    Dutta D; Zhao T; Cheah KB; Holmlund L; Willcox MDP
    Cont Lens Anterior Eye; 2017 Jun; 40(3):175-183. PubMed ID: 28118996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiofilm elastin-like polypeptide coatings: functionality, stability, and selectivity.
    Atefyekta S; Pihl M; Lindsay C; Heilshorn SC; Andersson M
    Acta Biomater; 2019 Jan; 83():245-256. PubMed ID: 30541700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm.
    Jennings JA; Carpenter DP; Troxel KS; Beenken KE; Smeltzer MS; Courtney HS; Haggard WO
    Clin Orthop Relat Res; 2015 Jul; 473(7):2270-82. PubMed ID: 25604874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.