These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26934432)
1. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI. Patterson BM; Lee M; Bastow TP; Wilson JT; Donn MJ; Furness A; Goodwin B; Manefield M J Contam Hydrol; 2016 May; 188():1-11. PubMed ID: 26934432 [TBL] [Abstract][Full Text] [Related]
2. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application. Yang J; Meng L; Guo L Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708 [TBL] [Abstract][Full Text] [Related]
3. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490 [TBL] [Abstract][Full Text] [Related]
4. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments. Broholm MM; Hunkeler D; Tuxen N; Jeannottat S; Scheutz C Chemosphere; 2014 Aug; 108():265-73. PubMed ID: 24559936 [TBL] [Abstract][Full Text] [Related]
5. Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Hunkeler D; Aravena R; Cox E Environ Sci Technol; 2002 Aug; 36(15):3378-84. PubMed ID: 12188368 [TBL] [Abstract][Full Text] [Related]
6. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater. Wang W; Wu Y Environ Sci Pollut Res Int; 2019 Apr; 26(12):12042-12054. PubMed ID: 30827025 [TBL] [Abstract][Full Text] [Related]
7. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Grostern A; Edwards EA Appl Environ Microbiol; 2006 Jan; 72(1):428-36. PubMed ID: 16391074 [TBL] [Abstract][Full Text] [Related]
8. Comparison of 1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope fractionation during dechlorination by two Dehalococcoides strains. Schmidt M; Lege S; Nijenhuis I Water Res; 2014 Apr; 52():146-54. PubMed ID: 24468425 [TBL] [Abstract][Full Text] [Related]
9. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum. Yang MI; Previdsa M; Edwards EA; Sleep BE Water Res; 2020 Nov; 186():116310. PubMed ID: 32858243 [TBL] [Abstract][Full Text] [Related]
10. Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Chan WW; Grostern A; Löffler FE; Edwards EA Environ Sci Technol; 2011 Nov; 45(22):9693-702. PubMed ID: 21955221 [TBL] [Abstract][Full Text] [Related]
11. Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres: preparation and microcosm study. Ji C; Meng L; Wang H Environ Sci Pollut Res Int; 2019 Oct; 26(30):30584-30595. PubMed ID: 29349739 [TBL] [Abstract][Full Text] [Related]
12. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. Borden RC J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Wei YT; Wu SC; Yang SW; Che CH; Lien HL; Huang DH J Hazard Mater; 2012 Apr; 211-212():373-80. PubMed ID: 22118849 [TBL] [Abstract][Full Text] [Related]
14. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Grostern A; Chan WW; Edwards EA Environ Sci Technol; 2009 Sep; 43(17):6799-807. PubMed ID: 19764252 [TBL] [Abstract][Full Text] [Related]
15. Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Elsner M; Chartrand M; Vanstone N; Couloume GL; Lollar BS Environ Sci Technol; 2008 Aug; 42(16):5963-70. PubMed ID: 18767652 [TBL] [Abstract][Full Text] [Related]
16. Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. Rosell M; Palau J; Mortan SH; Caminal G; Soler A; Shouakar-Stash O; Marco-Urrea E Sci Total Environ; 2019 Jan; 648():422-429. PubMed ID: 30121041 [TBL] [Abstract][Full Text] [Related]
17. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related]
18. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Lorah MM; Voytek MA J Contam Hydrol; 2004 May; 70(1-2):117-45. PubMed ID: 15068871 [TBL] [Abstract][Full Text] [Related]
19. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites. Scheutz C; Durant ND; Broholm MM Biodegradation; 2014 Jun; 25(3):459-78. PubMed ID: 24233554 [TBL] [Abstract][Full Text] [Related]
20. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. Morrill PL; Lacrampe-Couloume G; Slater GF; Sleep BE; Edwards EA; McMaster ML; Major DW; Sherwood Lollar B J Contam Hydrol; 2005 Feb; 76(3-4):279-93. PubMed ID: 15683884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]