BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2693456)

  • 1. The use of gene-fusions to determine membrane protein topology in Saccharomyces cerevisiae.
    Green GN; Hansen W; Walter P
    J Cell Sci Suppl; 1989; 11():109-13. PubMed ID: 2693456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum of Saccharomyces cerevisiae.
    Green N; Walter P
    Mol Cell Biol; 1992 Jan; 12(1):276-82. PubMed ID: 1729604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology of membrane insertion in vitro and plasma membrane assembly in vivo of the yeast arginine permease.
    Ahmad M; Bussey H
    Mol Microbiol; 1988 Sep; 2(5):627-35. PubMed ID: 3054424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAN1-SUC2 gene fusion studies in Saccharomyces cerevisiae.
    Hoffmann W
    Mol Gen Genet; 1987 Dec; 210(2):277-81. PubMed ID: 3325776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and chromosomal organization of a gene encoding a putative amino-acid permease from Saccharomyces cerevisiae.
    Mai B; Lipp M
    Gene; 1994 May; 143(1):129-33. PubMed ID: 8200527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary structure of the uracil transport protein of Saccharomyces cerevisiae.
    Jund R; Weber E; Chevallier MR
    Eur J Biochem; 1988 Jan; 171(1-2):417-24. PubMed ID: 3276521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast arginine permease: nucleotide sequence of the CAN1 gene.
    Ahmad M; Bussey H
    Curr Genet; 1986; 10(8):587-92. PubMed ID: 3327612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutation affecting signal peptidase inhibits degradation of an abnormal membrane protein in Saccharomyces cerevisiae.
    Mullins C; Lu Y; Campbell A; Fang H; Green N
    J Biol Chem; 1995 Jul; 270(29):17139-47. PubMed ID: 7615509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions.
    Sarsero JP; Pittard AJ
    J Bacteriol; 1995 Jan; 177(2):297-306. PubMed ID: 7814318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.
    Cartwright CP; Tipper DJ
    Mol Cell Biol; 1991 May; 11(5):2620-8. PubMed ID: 2017168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae.
    De Boer M; Bebelman JP; Gonçalves PM; Maat J; Van Heerikhuizen H; Planta RJ
    Mol Microbiol; 1998 Nov; 30(3):603-13. PubMed ID: 9822825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of Candida albicans CAN1 permease expressed in Saccharomyces cerevisiae.
    Matĕjcková A; Sychrová H
    Folia Microbiol (Praha); 1996; 41(1):107-9. PubMed ID: 9090844
    [No Abstract]   [Full Text] [Related]  

  • 13. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism.
    Beaudoin F; Napier JA
    Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.
    Vandenbol M; Jauniaux JC; Grenson M
    Gene; 1989 Nov; 83(1):153-9. PubMed ID: 2687114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for determining the in vivo topology of yeast polytopic membrane proteins demonstrates that Gap1p fully integrates into the membrane independently of Shr3p.
    Gilstring CF; Ljungdahl PO
    J Biol Chem; 2000 Oct; 275(40):31488-95. PubMed ID: 10903320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first hydrophobic segment of the ABC-transporter, Ste6, functions as a signal sequence.
    Kölling R; Hollenberg CP
    FEBS Lett; 1994 Sep; 351(2):155-8. PubMed ID: 8082755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence.
    Purdue PE; Lazarow PB
    J Cell Biol; 1996 Aug; 134(4):849-62. PubMed ID: 8769411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of a subset of signal sequences by Ssh1p, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae.
    Wittke S; Dünnwald M; Albertsen M; Johnsson N
    Mol Biol Cell; 2002 Jul; 13(7):2223-32. PubMed ID: 12134063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHR3 function is linked to cOPII mediated ER vesicle formation.
    Gilstring CF; Melin-Larsson M; Moliner AL; Ljungdahl PO
    Folia Microbiol (Praha); 1996; 41(1):93. PubMed ID: 9090835
    [No Abstract]   [Full Text] [Related]  

  • 20. Mediation, by Saccharomyces cerevisiae translocation signals, of beta-lactamase transport through the Escherichia coli inner membrane and sensitive method for detection of signal sequences.
    Roggenkamp R; Reipen G; Hollenberg CP
    J Bacteriol; 1986 Oct; 168(1):467-9. PubMed ID: 3531185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.