These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 26935135)

  • 1. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.
    Chakroun M; Banyuls N; Bel Y; Escriche B; Ferré J
    Microbiol Mol Biol Rev; 2016 Jun; 80(2):329-50. PubMed ID: 26935135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers.
    Syed T; Askari M; Meng Z; Li Y; Abid MA; Wei Y; Guo S; Liang C; Zhang R
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823872
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.
    Bravo A; Gill SS; Soberón M
    Toxicon; 2007 Mar; 49(4):423-35. PubMed ID: 17198720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Site-Mutations Within the 22 kDa No-Core Fragment of the Vip3Aa11 Insecticidal Toxin of Bacillus thuringiensis.
    Liu M; Liu R; Luo G; Li H; Gao J
    Curr Microbiol; 2017 May; 74(5):655-659. PubMed ID: 28321527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera.
    Chakrabarty S; Jin M; Wu C; Chakraborty P; Xiao Y
    Pest Manag Sci; 2020 May; 76(5):1612-1617. PubMed ID: 32103608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cytocidal Spectrum of
    Mendoza-Almanza G; Esparza-Ibarra EL; Ayala-Luján JL; Mercado-Reyes M; Godina-González S; Hernández-Barrales M; Olmos-Soto J
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32384723
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae).
    Lone SA; Yadav R; Malik A; Padaria JC
    Can J Microbiol; 2016 Feb; 62(2):179-90. PubMed ID: 26751639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity.
    Jucovic M; Walters FS; Warren GW; Palekar NV; Chen JS
    Protein Eng Des Sel; 2008 Oct; 21(10):631-8. PubMed ID: 18723852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetative Insecticidal Protein (Vip): A Potential Contender From
    Gupta M; Kumar H; Kaur S
    Front Microbiol; 2021; 12():659736. PubMed ID: 34054756
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluating Cross-resistance Between Vip and Cry Toxins of Bacillus thuringiensis.
    Tabashnik BE; Carrière Y
    J Econ Entomol; 2020 Apr; 113(2):553-561. PubMed ID: 31821498
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Geng J; Jiang J; Shu C; Wang Z; Song F; Geng L; Duan J; Zhang J
    Toxins (Basel); 2019 Jul; 11(8):. PubMed ID: 31349641
    [No Abstract]   [Full Text] [Related]  

  • 13. Bacillus thuringiensis: A story of a successful bioinsecticide.
    Bravo A; Likitvivatanavong S; Gill SS; Soberón M
    Insect Biochem Mol Biol; 2011 Jul; 41(7):423-31. PubMed ID: 21376122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to cope with insect resistance to Bt toxins?
    Bravo A; Soberón M
    Trends Biotechnol; 2008 Oct; 26(10):573-9. PubMed ID: 18706722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.
    Baranek J; Kaznowski A; Konecka E; Naimov S
    J Invertebr Pathol; 2015 Sep; 130():72-81. PubMed ID: 26146224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus thuringiensis toxins: an overview of their biocidal activity.
    Palma L; Muñoz D; Berry C; Murillo J; Caballero P
    Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action.
    Jurat-Fuentes JL; Crickmore N
    J Invertebr Pathol; 2017 Jan; 142():5-10. PubMed ID: 27480404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of chimeric Bacillus thuringiensis Vip3 toxins.
    Fang J; Xu X; Wang P; Zhao JZ; Shelton AM; Cheng J; Feng MG; Shen Z
    Appl Environ Microbiol; 2007 Feb; 73(3):956-61. PubMed ID: 17122403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests.
    Betz FS; Hammond BG; Fuchs RL
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review.
    Vachon V; Laprade R; Schwartz JL
    J Invertebr Pathol; 2012 Sep; 111(1):1-12. PubMed ID: 22617276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.