These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26935322)

  • 1. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles.
    Tan H; Santbergen R; Smets AH; Zeman M
    Nano Lett; 2012 Aug; 12(8):4070-6. PubMed ID: 22738234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells.
    Raja W; Bozzola A; Zilio P; Miele E; Panaro S; Wang H; Toma A; Alabastri A; De Angelis F; Zaccaria RP
    Sci Rep; 2016 Apr; 6():24539. PubMed ID: 27080420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence.
    Barugkin C; Allen T; Chong TK; White TP; Weber KJ; Catchpole KR
    Opt Express; 2015 Apr; 23(7):A391-400. PubMed ID: 25968804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids.
    Mendes MJ; Morawiec S; Mateus T; Lyubchyk A; Águas H; Ferreira I; Fortunato E; Martins R; Priolo F; Crupi I
    Nanotechnology; 2015 Mar; 26(13):135202. PubMed ID: 25760231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
    Pathi P; Peer A; Biswas R
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors.
    Morawiec S; Mendes MJ; Filonovich SA; Mateus T; Mirabella S; Aguas H; Ferreira I; Simone F; Fortunato E; Martins R; Priolo F; Crupi I
    Opt Express; 2014 Jun; 22 Suppl 4():A1059-70. PubMed ID: 24978069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light trapping with plasmonic particles: beyond the dipole model.
    Beck FJ; Mokkapati S; Catchpole KR
    Opt Express; 2011 Dec; 19(25):25230-41. PubMed ID: 22273914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency light-trapping effect using silver nanoparticles on thin amorphous silicon subwavelength structure.
    Tan CL; Lee YT
    Opt Lett; 2013 Dec; 38(23):4943-5. PubMed ID: 24281478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays.
    Liberman V; Parameswaran L; Rothschild M; Ait-El-Aoud Y; Luce A; Okamoto M; Willcox WB; Giardini S; Osgood RM
    Nanotechnology; 2018 Sep; 29(38):385206. PubMed ID: 29956677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit.
    Biswas R; Xu C
    Opt Express; 2011 Jul; 19 Suppl 4():A664-72. PubMed ID: 21747533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells.
    Parashar PK; Komarala VK
    Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light trapping limits in plasmonic solar cells: an analytical investigation.
    Sheng X; Hu J; Michel J; Kimerling LC
    Opt Express; 2012 Jul; 20 Suppl 4():A496-501. PubMed ID: 22828618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.